Free Access
Issue
Med Sci (Paris)
Volume 34, Number 2, Février 2018
Page(s) 137 - 144
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183402011
Published online 16 February 2018
  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 : 843-54. [Google Scholar]
  2. Romero Y, Calvel P, Nef S. Petits ARN non codants et spermatogenèse. Med Sci (Paris) 2012; 28 : 490-6. [CrossRef] [Google Scholar]
  3. Rie D de, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35 : 872-8. [Google Scholar]
  4. Griffiths-Jones S, Saini HK, Dongen S Van, et al. miRBase: Tools for microRNA genomics. Nucleic Acids Res 2008; 36 : D154-8. [CrossRef] [PubMed] [Google Scholar]
  5. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007; 104 : 17719-24. [CrossRef] [Google Scholar]
  6. Ozsolak F, Poling LL, Wang Z, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev 2008; 22 : 3172-83. [Google Scholar]
  7. Fujita S, Iba H. Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 2008; 24 : 303-8. [Google Scholar]
  8. Corcoran DL, Pandit K V., Gordon B, et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009; 4 : e5279. [Google Scholar]
  9. Chien CH, Sun YM, Chang WC, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011; 39 : 9345-56. [Google Scholar]
  10. Nguyen TA, Jo MH, Choi Y-G, et al. Functional anatomy of the human microprocessor. Cell 2015; 161 : 1374-87. [Google Scholar]
  11. Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004; 303 : 95-8. [Google Scholar]
  12. Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA 2016; 113 : E1881-9. [CrossRef] [Google Scholar]
  13. Diederichs S, Haber DA. Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007; 131 : 1097-108. [Google Scholar]
  14. Bouasker S, Simard MJ. The slicing activity of miRNA-specific Argonautes is essential for the miRNA pathway in C. elegans. Nucleic Acids Res 2012; 40 : 10452-62. [CrossRef] [Google Scholar]
  15. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008; 9 : 22-32. [CrossRef] [Google Scholar]
  16. Iwasaki S, Kobayashi M, Yoda M, et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010; 39 : 292-9. [Google Scholar]
  17. Iwasaki S, Sasaki HM, Sakaguchi Y, et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 2015; 521 : 533-6. [Google Scholar]
  18. Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115 : 199-208. [Google Scholar]
  19. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115 : 209-16. [Google Scholar]
  20. Chung WJ, Agius P, Westholm JO, et al. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res 2011; 21 : 286-300. [Google Scholar]
  21. Cheloufi S, Santos CO Dos, Chong MMW, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465 : 584-9. [Google Scholar]
  22. Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010; 328 : 1694-8. [Google Scholar]
  23. Muller S, Pandey RR, Pillai RS. Les piARN forgent un système immunitaire pour le génome. Med Sci (Paris) 2013; 29 : 487-94. [Google Scholar]
  24. Lim RSM, Kai T. A piece of the pi(e): the diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48 : 17-31. [Google Scholar]
  25. Watanabe T, Takeda A, Tsukiyama T, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: Retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 2006; 20 : 1732-43. [Google Scholar]
  26. Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442 : 199-202. [Google Scholar]
  27. Nishimasu H, Ishizu H, Saito K, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491 : 284-7. [Google Scholar]
  28. Ipsaro JJ, Haase AD, Knott SR, et al. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 2012; 491 : 279-83. [Google Scholar]
  29. Kawaoka S, Izumi N, Katsuma S, et al. 3’ End formation of PIWI-interacting RNAs in vitro. Mol Cell 2011; 43 : 1015-22. [Google Scholar]
  30. Horwich MD, Li C, Matranga C, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007; 17 : 1265-72. [Google Scholar]
  31. Hayashi R, Schnabl J, Handler D, et al. Genetic and mechanistic diversity of piRNA 3’-end formation. Nature 2016; 539 : 588-92. [Google Scholar]
  32. Feltzin VL, Khaladkar M, Abe M, et al. The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 2015; 14 : 443-52. [Google Scholar]
  33. Pandey RR, Homolka D, Chen K-M, et al. Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries. PLOS Genet 2017; 13 : e1006956. [Google Scholar]
  34. Siomi MC, Sato K, Pezic D, et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12 : 246-58. [Google Scholar]
  35. Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127 : 1193-207. [CrossRef] [PubMed] [Google Scholar]
  36. Batista PJ, Ruby G, Claycomb JM, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31 : 67-78. [Google Scholar]
  37. Montgomery TA, Rim YS, Zhang C, et al. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet. 2012; 8 : e1002616. [Google Scholar]
  38. Wang G, Reinke V. A C. elegans Piwi, PRG-1, Regulates 21U-RNAs during spermatogenesis. Curr Biol 2008; 18 : 861-7. [Google Scholar]
  39. Wedeles C, Wu M, Claycomb J. Protection of germline gene expression by the C. elegans argonaute CSR-1. Dev Cell 2013; 27 : 664-71. [Google Scholar]
  40. Goh WSS, Seah JWE, Harrison EJ, et al. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis. Genes Dev 2014; 28 : 797-807. [Google Scholar]
  41. Albuquerque BFM de, Luteijn MJ, Cordeiro Rodrigues RJ, et al. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans. Genes Dev 2014; 28 : 683-8. [Google Scholar]
  42. Weick EM, Sarkies P, Silva N, et al. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 2014; 28 : 783-96. [Google Scholar]
  43. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806-11. [Google Scholar]
  44. Ketting RF, Fischer SEJ, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15 : 2654-9. [Google Scholar]
  45. Gent JI, Lamm AT, Pavelec DM, et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol Cell 2010; 37 : 679-89. [Google Scholar]
  46. Han T, Manoharan AP, Harkins TT, et al. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 2009; 106 : 18674-9. [Google Scholar]
  47. Yigit E, Batista PJ, Bei Y, et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006; 127 : 747-57. [Google Scholar]
  48. Conine CC, Batista PJ, Gu W, et al. Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 2010; 107 : 3588-93. [CrossRef] [Google Scholar]
  49. Czech B, Malone CD, Zhou R, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008; 453 : 798-802. [Google Scholar]
  50. Okamura K, Chung WJ, Ruby JG, et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008; 453 : 803-6. [Google Scholar]
  51. Tam OH, Aravin AA, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008; 453 : 534-8. [Google Scholar]
  52. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453 : 539-43. [Google Scholar]
  53. Piatek MJ, Werner A. Endogenous siRNAs, regulators of internal affairs. Biochem Soc Trans 2014; 42 : 1174-9. [CrossRef] [Google Scholar]
  54. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10 :185-91. [Google Scholar]
  55. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17 : 3011-6. [Google Scholar]
  56. Büssing I, Yang JS, Lai EC, Grosshans H. The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J 2010; 29 : 1830-9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.