Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 2, Février 2018
Page(s) 137 - 144
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183402011
Publié en ligne 16 février 2018
  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 : 843-54. [Google Scholar]
  2. Romero Y, Calvel P, Nef S. Petits ARN non codants et spermatogenèse. Med Sci (Paris) 2012; 28 : 490-6. [CrossRef] [Google Scholar]
  3. Rie D de, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35 : 872-8. [Google Scholar]
  4. Griffiths-Jones S, Saini HK, Dongen S Van, et al. miRBase: Tools for microRNA genomics. Nucleic Acids Res 2008; 36 : D154-8. [Google Scholar]
  5. Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007; 104 : 17719-24. [CrossRef] [Google Scholar]
  6. Ozsolak F, Poling LL, Wang Z, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev 2008; 22 : 3172-83. [Google Scholar]
  7. Fujita S, Iba H. Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 2008; 24 : 303-8. [Google Scholar]
  8. Corcoran DL, Pandit K V., Gordon B, et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009; 4 : e5279. [Google Scholar]
  9. Chien CH, Sun YM, Chang WC, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 2011; 39 : 9345-56. [Google Scholar]
  10. Nguyen TA, Jo MH, Choi Y-G, et al. Functional anatomy of the human microprocessor. Cell 2015; 161 : 1374-87. [Google Scholar]
  11. Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science 2004; 303 : 95-8. [Google Scholar]
  12. Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA 2016; 113 : E1881-9. [CrossRef] [Google Scholar]
  13. Diederichs S, Haber DA. Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007; 131 : 1097-108. [Google Scholar]
  14. Bouasker S, Simard MJ. The slicing activity of miRNA-specific Argonautes is essential for the miRNA pathway in C. elegans. Nucleic Acids Res 2012; 40 : 10452-62. [CrossRef] [Google Scholar]
  15. Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008; 9 : 22-32. [CrossRef] [Google Scholar]
  16. Iwasaki S, Kobayashi M, Yoda M, et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010; 39 : 292-9. [Google Scholar]
  17. Iwasaki S, Sasaki HM, Sakaguchi Y, et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 2015; 521 : 533-6. [Google Scholar]
  18. Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115 : 199-208. [Google Scholar]
  19. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115 : 209-16. [Google Scholar]
  20. Chung WJ, Agius P, Westholm JO, et al. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res 2011; 21 : 286-300. [Google Scholar]
  21. Cheloufi S, Santos CO Dos, Chong MMW, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010; 465 : 584-9. [Google Scholar]
  22. Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010; 328 : 1694-8. [Google Scholar]
  23. Muller S, Pandey RR, Pillai RS. Les piARN forgent un système immunitaire pour le génome. Med Sci (Paris) 2013; 29 : 487-94. [Google Scholar]
  24. Lim RSM, Kai T. A piece of the pi(e): the diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48 : 17-31. [Google Scholar]
  25. Watanabe T, Takeda A, Tsukiyama T, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: Retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 2006; 20 : 1732-43. [Google Scholar]
  26. Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006; 442 : 199-202. [Google Scholar]
  27. Nishimasu H, Ishizu H, Saito K, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012; 491 : 284-7. [Google Scholar]
  28. Ipsaro JJ, Haase AD, Knott SR, et al. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 2012; 491 : 279-83. [Google Scholar]
  29. Kawaoka S, Izumi N, Katsuma S, et al. 3’ End formation of PIWI-interacting RNAs in vitro. Mol Cell 2011; 43 : 1015-22. [Google Scholar]
  30. Horwich MD, Li C, Matranga C, et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007; 17 : 1265-72. [Google Scholar]
  31. Hayashi R, Schnabl J, Handler D, et al. Genetic and mechanistic diversity of piRNA 3’-end formation. Nature 2016; 539 : 588-92. [Google Scholar]
  32. Feltzin VL, Khaladkar M, Abe M, et al. The exonuclease Nibbler regulates age-associated traits and modulates piRNA length in Drosophila. Aging Cell 2015; 14 : 443-52. [Google Scholar]
  33. Pandey RR, Homolka D, Chen K-M, et al. Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries. PLOS Genet 2017; 13 : e1006956. [Google Scholar]
  34. Siomi MC, Sato K, Pezic D, et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12 : 246-58. [Google Scholar]
  35. Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006; 127 : 1193-207. [CrossRef] [PubMed] [Google Scholar]
  36. Batista PJ, Ruby G, Claycomb JM, et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31 : 67-78. [Google Scholar]
  37. Montgomery TA, Rim YS, Zhang C, et al. PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet. 2012; 8 : e1002616. [Google Scholar]
  38. Wang G, Reinke V. A C. elegans Piwi, PRG-1, Regulates 21U-RNAs during spermatogenesis. Curr Biol 2008; 18 : 861-7. [Google Scholar]
  39. Wedeles C, Wu M, Claycomb J. Protection of germline gene expression by the C. elegans argonaute CSR-1. Dev Cell 2013; 27 : 664-71. [Google Scholar]
  40. Goh WSS, Seah JWE, Harrison EJ, et al. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis. Genes Dev 2014; 28 : 797-807. [Google Scholar]
  41. Albuquerque BFM de, Luteijn MJ, Cordeiro Rodrigues RJ, et al. PID-1 is a novel factor that operates during 21U-RNA biogenesis in Caenorhabditis elegans. Genes Dev 2014; 28 : 683-8. [Google Scholar]
  42. Weick EM, Sarkies P, Silva N, et al. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 2014; 28 : 783-96. [Google Scholar]
  43. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806-11. [Google Scholar]
  44. Ketting RF, Fischer SEJ, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15 : 2654-9. [Google Scholar]
  45. Gent JI, Lamm AT, Pavelec DM, et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol Cell 2010; 37 : 679-89. [Google Scholar]
  46. Han T, Manoharan AP, Harkins TT, et al. 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 2009; 106 : 18674-9. [Google Scholar]
  47. Yigit E, Batista PJ, Bei Y, et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006; 127 : 747-57. [Google Scholar]
  48. Conine CC, Batista PJ, Gu W, et al. Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 2010; 107 : 3588-93. [CrossRef] [Google Scholar]
  49. Czech B, Malone CD, Zhou R, et al. An endogenous small interfering RNA pathway in Drosophila. Nature 2008; 453 : 798-802. [Google Scholar]
  50. Okamura K, Chung WJ, Ruby JG, et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 2008; 453 : 803-6. [Google Scholar]
  51. Tam OH, Aravin AA, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008; 453 : 534-8. [Google Scholar]
  52. Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453 : 539-43. [Google Scholar]
  53. Piatek MJ, Werner A. Endogenous siRNAs, regulators of internal affairs. Biochem Soc Trans 2014; 42 : 1174-9. [CrossRef] [Google Scholar]
  54. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004; 10 :185-91. [Google Scholar]
  55. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17 : 3011-6. [Google Scholar]
  56. Büssing I, Yang JS, Lai EC, Grosshans H. The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J 2010; 29 : 1830-9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.