Free Access
Med Sci (Paris)
Volume 33, Number 12, Décembre 2017
Page(s) 1063 - 1070
Section M/S Revues
Published online 20 December 2017
  1. Costantini M, Musto H. The isochores as a fundamental level of genome structure and organization: a general overview. J Mol Evol 2017 ; 84 : 93–103. [CrossRef] [PubMed] [Google Scholar]
  2. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Med 2013 ; 3 : 1–26. [Google Scholar]
  3. Hiratani I, Ryba T, Itoh M, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008 ; 6 : e245. [CrossRef] [PubMed] [Google Scholar]
  4. Berezney R, Dubey DD, Huberman JA. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 2000 ; 108 : 471–484. [Google Scholar]
  5. Miotto B. Comment l’approche génomique aide à comprendre le processus d’initiation de la réplication. Med Sci (Paris) 2017 ; 33 : 143–150. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Prioleau MN, MacAlpine DM. DNA replication origins-where do we begin?. Genes Dev 2016 ; 30 : 1683–1697. [CrossRef] [PubMed] [Google Scholar]
  7. Letessier A, Birnbaum D, Debatisse M, et al. La pauvreté en sites d’initiation de la réplication rend-elle fragile certaines régions du génome ?. Med Sci (Paris) 2011 ; 27 : 707–709. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 2015 ; 43 : 8627–8637. [CrossRef] [PubMed] [Google Scholar]
  9. Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 2017 ; 18 : 279–284. [CrossRef] [PubMed] [Google Scholar]
  10. Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005 ; 33 : 2908–2916. [CrossRef] [PubMed] [Google Scholar]
  11. Chambers VS, Marsico G, Boutell JM, et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 2015 ; 33 : 877–881. [CrossRef] [PubMed] [Google Scholar]
  12. Schaffitzel C, Berger I, Postberg J, et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 2001 ; 98 : 8572–8577. [CrossRef] [Google Scholar]
  13. Rodriguez R, Miller KM, Forment JV, et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 2012 ; 8 : 301–310. [Google Scholar]
  14. Hänsel-Hertsch R, Beraldi D, Lensing SV, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet 2016 ; 48 : 1267–1272. [Google Scholar]
  15. Kruisselbrink E, Guryev V, Brouwer K, et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol 2008 ; 18 : 900–905. [CrossRef] [PubMed] [Google Scholar]
  16. London TBC, Barber LJ, Mosedale G, et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C Tracts. J Biol Chem 2008 ; 283 : 36132–36139. [CrossRef] [PubMed] [Google Scholar]
  17. Castillo Bosch P, Segura-Bayona S, Koole W, et al. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 2014; 33 : 2521–2533. [CrossRef] [PubMed] [Google Scholar]
  18. Paeschke K, Capra JA, Zakian VA. DNA replication through G-Quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 2011 ; 145 : 678–691. [CrossRef] [PubMed] [Google Scholar]
  19. Lopes J, Piazza A, Bermejo R, et al. G-quadruplex-induced instability during leading-strand replication: G-quadruplex-induced instability. EMBO J 2011 ; 30 : 4033–4046. [CrossRef] [PubMed] [Google Scholar]
  20. Piazza A, Adrian M, Samazan F, et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 2015 ; 34 : 1718–1734. [CrossRef] [PubMed] [Google Scholar]
  21. Schiavone D, Guilbaud G, Murat P, et al. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J 2014 ; 33 : 2507–2520. [CrossRef] [PubMed] [Google Scholar]
  22. Sarkies P, Murat P, Phillips LG, et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 2012 ; 40 : 1485–1498. [CrossRef] [PubMed] [Google Scholar]
  23. Sarkies P, Reams C, Simpson LJ, et al. Epigenetic instability due to defective replication of structured DNA. Mol Cell 2010 ; 40 : 703–713. [CrossRef] [PubMed] [Google Scholar]
  24. Schiavone D, Jozwiakowski SK, Romanello M, et al. PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 2016 ; 61 : 161–169. [CrossRef] [PubMed] [Google Scholar]
  25. Méchali M, Yoshida K, Coulombe P, et al. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013 ; 23 : 124–131. [CrossRef] [PubMed] [Google Scholar]
  26. Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 2008 ; 105 : 15837–15842. [CrossRef] [Google Scholar]
  27. Sequeira-Mendes J, Díaz-Uriarte R, Apedaile A, et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009 ; 5 : e1000446. [CrossRef] [PubMed] [Google Scholar]
  28. Cayrou C, Coulombe P, Vigneron A, et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 2011 ; 21 : 1438–1449. [CrossRef] [PubMed] [Google Scholar]
  29. Besnard E, Babled A, Lapasset L, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012 ; 19 : 837–844. [CrossRef] [PubMed] [Google Scholar]
  30. Picard F, Cadoret JC, Audit B, et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 2014 ; 10 : e1004282. [CrossRef] [PubMed] [Google Scholar]
  31. Valton AL, Hassan-Zadeh V, Lema I, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014 ; 33 : 732–746. [CrossRef] [PubMed] [Google Scholar]
  32. Hassan-Zadeh V, Chilaka S, Cadoret JC, et al. USF binding sequences from the HS4 insulator element impose early replication timing on a vertebrate replicator. PLoS Biol 2012 ; 10 : e1001277. [CrossRef] [PubMed] [Google Scholar]
  33. Fenouil R, Cauchy P, Koch F, et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 2012 ; 22 : 2399–2408. [CrossRef] [PubMed] [Google Scholar]
  34. Eaton ML, Galani K, Kang S, et al. Conserved nucleosome positioning defines replication origins. Genes Dev 2010 ; 24 : 748–753. [CrossRef] [PubMed] [Google Scholar]
  35. Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 2010 ; 6 : e1001092. [CrossRef] [PubMed] [Google Scholar]
  36. Hoshina S, Yura K, Teranishi H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013 ; 288 : 30161–30171. [CrossRef] [PubMed] [Google Scholar]
  37. Keller H, Kiosze K, Sachsenweger J, et al. The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res 2014 ; 42 : 12614–12627. [CrossRef] [PubMed] [Google Scholar]
  38. Papadopoulou C, Guilbaud G, Schiavone D, et al. Nucleotide pool depletion induces G-quadruplex-dependent perturbation of gene expression. Cell Rep 2015 ; 13 : 2491–2503. [CrossRef] [PubMed] [Google Scholar]
  39. De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 2011 ; 18 : 950–955. [CrossRef] [PubMed] [Google Scholar]
  40. Bose P, Hermetz KE, Conneely KN, et al. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One 2014 ; 9 : e101607. [CrossRef] [PubMed] [Google Scholar]
  41. Monchaud D. Quadruplexes d’ADN : structures, fonctions et détection. Med Sci (Paris) 2017 ; 33 : 1042–1045. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.