Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 12, Décembre 2017
|
|
---|---|---|
Page(s) | 1063 - 1070 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173312013 | |
Publié en ligne | 20 décembre 2017 |
- Costantini M, Musto H. The isochores as a fundamental level of genome structure and organization: a general overview. J Mol Evol 2017 ; 84 : 93–103. [CrossRef] [PubMed] [Google Scholar]
- Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Med 2013 ; 3 : 1–26. [Google Scholar]
- Hiratani I, Ryba T, Itoh M, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008 ; 6 : e245. [CrossRef] [PubMed] [Google Scholar]
- Berezney R, Dubey DD, Huberman JA. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 2000 ; 108 : 471–484. [Google Scholar]
- Miotto B. Comment l’approche génomique aide à comprendre le processus d’initiation de la réplication. Med Sci (Paris) 2017 ; 33 : 143–150. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Prioleau MN, MacAlpine DM. DNA replication origins-where do we begin?. Genes Dev 2016 ; 30 : 1683–1697. [CrossRef] [PubMed] [Google Scholar]
- Letessier A, Birnbaum D, Debatisse M, et al. La pauvreté en sites d’initiation de la réplication rend-elle fragile certaines régions du génome ?. Med Sci (Paris) 2011 ; 27 : 707–709. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 2015 ; 43 : 8627–8637. [CrossRef] [PubMed] [Google Scholar]
- Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 2017 ; 18 : 279–284. [CrossRef] [PubMed] [Google Scholar]
- Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005 ; 33 : 2908–2916. [CrossRef] [PubMed] [Google Scholar]
- Chambers VS, Marsico G, Boutell JM, et al. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 2015 ; 33 : 877–881. [CrossRef] [PubMed] [Google Scholar]
- Schaffitzel C, Berger I, Postberg J, et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 2001 ; 98 : 8572–8577. [CrossRef] [Google Scholar]
- Rodriguez R, Miller KM, Forment JV, et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 2012 ; 8 : 301–310. [Google Scholar]
- Hänsel-Hertsch R, Beraldi D, Lensing SV, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet 2016 ; 48 : 1267–1272. [Google Scholar]
- Kruisselbrink E, Guryev V, Brouwer K, et al. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol 2008 ; 18 : 900–905. [CrossRef] [PubMed] [Google Scholar]
- London TBC, Barber LJ, Mosedale G, et al. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C Tracts. J Biol Chem 2008 ; 283 : 36132–36139. [CrossRef] [PubMed] [Google Scholar]
- Castillo Bosch P, Segura-Bayona S, Koole W, et al. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 2014; 33 : 2521–2533. [CrossRef] [PubMed] [Google Scholar]
- Paeschke K, Capra JA, Zakian VA. DNA replication through G-Quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 2011 ; 145 : 678–691. [CrossRef] [PubMed] [Google Scholar]
- Lopes J, Piazza A, Bermejo R, et al. G-quadruplex-induced instability during leading-strand replication: G-quadruplex-induced instability. EMBO J 2011 ; 30 : 4033–4046. [CrossRef] [PubMed] [Google Scholar]
- Piazza A, Adrian M, Samazan F, et al. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 2015 ; 34 : 1718–1734. [CrossRef] [PubMed] [Google Scholar]
- Schiavone D, Guilbaud G, Murat P, et al. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J 2014 ; 33 : 2507–2520. [CrossRef] [PubMed] [Google Scholar]
- Sarkies P, Murat P, Phillips LG, et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 2012 ; 40 : 1485–1498. [CrossRef] [PubMed] [Google Scholar]
- Sarkies P, Reams C, Simpson LJ, et al. Epigenetic instability due to defective replication of structured DNA. Mol Cell 2010 ; 40 : 703–713. [CrossRef] [PubMed] [Google Scholar]
- Schiavone D, Jozwiakowski SK, Romanello M, et al. PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 2016 ; 61 : 161–169. [CrossRef] [PubMed] [Google Scholar]
- Méchali M, Yoshida K, Coulombe P, et al. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013 ; 23 : 124–131. [CrossRef] [PubMed] [Google Scholar]
- Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 2008 ; 105 : 15837–15842. [CrossRef] [Google Scholar]
- Sequeira-Mendes J, Díaz-Uriarte R, Apedaile A, et al. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009 ; 5 : e1000446. [CrossRef] [PubMed] [Google Scholar]
- Cayrou C, Coulombe P, Vigneron A, et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 2011 ; 21 : 1438–1449. [CrossRef] [PubMed] [Google Scholar]
- Besnard E, Babled A, Lapasset L, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012 ; 19 : 837–844. [CrossRef] [PubMed] [Google Scholar]
- Picard F, Cadoret JC, Audit B, et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 2014 ; 10 : e1004282. [CrossRef] [PubMed] [Google Scholar]
- Valton AL, Hassan-Zadeh V, Lema I, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014 ; 33 : 732–746. [CrossRef] [PubMed] [Google Scholar]
- Hassan-Zadeh V, Chilaka S, Cadoret JC, et al. USF binding sequences from the HS4 insulator element impose early replication timing on a vertebrate replicator. PLoS Biol 2012 ; 10 : e1001277. [CrossRef] [PubMed] [Google Scholar]
- Fenouil R, Cauchy P, Koch F, et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 2012 ; 22 : 2399–2408. [CrossRef] [PubMed] [Google Scholar]
- Eaton ML, Galani K, Kang S, et al. Conserved nucleosome positioning defines replication origins. Genes Dev 2010 ; 24 : 748–753. [CrossRef] [PubMed] [Google Scholar]
- Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 2010 ; 6 : e1001092. [CrossRef] [PubMed] [Google Scholar]
- Hoshina S, Yura K, Teranishi H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013 ; 288 : 30161–30171. [CrossRef] [PubMed] [Google Scholar]
- Keller H, Kiosze K, Sachsenweger J, et al. The intrinsically disordered amino-terminal region of human RecQL4: multiple DNA-binding domains confer annealing, strand exchange and G4 DNA binding. Nucleic Acids Res 2014 ; 42 : 12614–12627. [CrossRef] [PubMed] [Google Scholar]
- Papadopoulou C, Guilbaud G, Schiavone D, et al. Nucleotide pool depletion induces G-quadruplex-dependent perturbation of gene expression. Cell Rep 2015 ; 13 : 2491–2503. [CrossRef] [PubMed] [Google Scholar]
- De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 2011 ; 18 : 950–955. [CrossRef] [PubMed] [Google Scholar]
- Bose P, Hermetz KE, Conneely KN, et al. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One 2014 ; 9 : e101607. [CrossRef] [PubMed] [Google Scholar]
- Monchaud D. Quadruplexes d’ADN : structures, fonctions et détection. Med Sci (Paris) 2017 ; 33 : 1042–1045. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.