Free Access
Med Sci (Paris)
Volume 33, Number 10, Octobre 2017
Page(s) 899 - 904
Section Repères
Published online 10 October 2017
  1. Gaillochet C, Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity. Development 2015 ; 142 : 2237–2249. [CrossRef] [PubMed] [Google Scholar]
  2. Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014 ; 344 : 1242281. [Google Scholar]
  3. Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell 2015 ; 16 : 465–476. [Google Scholar]
  4. Visvader JE, Clevers H. Tissue-specific designs of stem cell hierarchies. Nat Cell Biol 2016 ; 18 : 349–355. [CrossRef] [PubMed] [Google Scholar]
  5. Tetteh PW, Farin HF, Clevers H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 2015 ; 25 : 100–108. [Google Scholar]
  6. Moyret-Lalle C, Pommier R, Bouard C, et al. Plasticité des cellules cancéreuses et dissémination métastatique. Med Sci (Paris) 2016 ; 32 : 725–731. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978 ; 4 : 7–25. [PubMed] [Google Scholar]
  8. Scadden DT. Nice neighborhood: Emerging concepts of the stem cell niche. Cell 2014 ; 157 : 41–50. [CrossRef] [PubMed] [Google Scholar]
  9. Jagut M, Huynh J-R. Régulation des cellules souches de la lignée germinale. Med Sci (Paris) 2007 ; 23 : 611–618. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Barroca V, Lassalle B, Allemand I, et al. Des progéniteurs transplantés peuvent générer des cellules souches germinales. Med Sci (Paris) 2009 ; 25 : 893–895. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Adler CE. Sánchez Alvarado A. Types or states? Cellular dynamics and regenerative potential. Trends Cell Biol. 2015 ; 25 : 687–696. [Google Scholar]
  12. Zipori D. À la recherche d’une définition moléculaire plus que descriptive pour les cellules souches. Med Sci (Paris) 2011 ; 27 : 303–307. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function?. Cell 2001 ; 105 : 829–841. [CrossRef] [PubMed] [Google Scholar]
  14. Mikkers H, Frisen J. Deconstructing stemness. J Eur Mol Biol Organ 2005 ; 24 : 2715–2719. [CrossRef] [Google Scholar]
  15. Laplane L. Cancer stem cells: Philosophy and therapies. Cambridge, MA : Harvard University Press, 2016. [CrossRef] [Google Scholar]
  16. Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011 ; 146 : 633–644. [CrossRef] [PubMed] [Google Scholar]
  17. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014 ; 14 : 275–291. [Google Scholar]
  18. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001 ; 414 : 105–111. [CrossRef] [PubMed] [Google Scholar]
  19. Häfner S, Coulombel L. L’oligarchie contestée des cellules souches cancéreuses. Med Sci (Paris) 2009 ; 25 : 227–228. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Reynaud D, Pietras E, Barry-Holson K, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011 ; 20 : 661–673. [CrossRef] [PubMed] [Google Scholar]
  21. Welner RS, Amabile G, Bararia D, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 2015 ; 27 : 671–681. [CrossRef] [PubMed] [Google Scholar]
  22. Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011 ; 108 : 7950–7955. [CrossRef] [Google Scholar]
  23. Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010 ; 12 : 468–476. [CrossRef] [PubMed] [Google Scholar]
  24. Thirant C, Bessette B, Varlet P, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One 2011 ; 6 : e16375. [CrossRef] [PubMed] [Google Scholar]
  25. Latil M, Nassar D, Beck B, et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 2017 ; 20 : 191–204.e5. [Google Scholar]
  26. Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013 ; 154 : 61–74. [CrossRef] [PubMed] [Google Scholar]
  27. Whitson RJ, Oro AE. Soil primes the seed: Epigenetic landscape drives tumor behavior. Cell Stem Cell 2017 ; 20 : 149–150. [Google Scholar]
  28. Emanuel PD, Bates LJ, Castleberry RP, et al. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991 ; 77 : 925–929. [Google Scholar]
  29. Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAK-STAT 2012 ; 1 : 184–190. [CrossRef] [PubMed] [Google Scholar]
  30. Vainchenker W, Constantinescu SN, Plo I, et al. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Research 2016; 5 : 700. [Google Scholar]
  31. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 2014 ; 512 : 78–81. [CrossRef] [PubMed] [Google Scholar]
  32. Landau DA, Clement K, Ziller MJ, et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 2014 ; 26 : 813–825. [CrossRef] [PubMed] [Google Scholar]
  33. Merlevede J, Droin N, Qin T, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 2016 ; 7 : 10767. [CrossRef] [PubMed] [Google Scholar]
  34. Sager H, Davis WC, Dobbelaere DA, et al. Macrophage-parasite relationship in theileriosis. Reversible phenotypic and functional dedifferentiation of macrophages infected with Theileria annulata. J Leukoc Biol 1997 ; 61 : 459–468. [PubMed] [Google Scholar]
  35. Sager H, Bertoni G, Jungi TW. Differences between B cell and macrophage transformation by the bovine parasite, Theileria annulata: a clonal approach. J Immunol 1998 ; 161 : 335–341. [PubMed] [Google Scholar]
  36. Cheeseman K, Certad G, Weitzman JB. Parasites et cancer : existe-t-il un lien ?. Med Sci (Paris) 2016 ; 32 : 867–873. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004 ; 6 : 587–596. [CrossRef] [PubMed] [Google Scholar]
  38. Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003 ; 17 : 3029–3035. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.