Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 10, Octobre 2017
|
|
---|---|---|
Page(s) | 899 - 904 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/20173310023 | |
Publié en ligne | 10 octobre 2017 |
- Gaillochet C, Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity. Development 2015 ; 142 : 2237–2249. [CrossRef] [PubMed] [Google Scholar]
- Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014 ; 344 : 1242281. [Google Scholar]
- Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell 2015 ; 16 : 465–476. [Google Scholar]
- Visvader JE, Clevers H. Tissue-specific designs of stem cell hierarchies. Nat Cell Biol 2016 ; 18 : 349–355. [CrossRef] [PubMed] [Google Scholar]
- Tetteh PW, Farin HF, Clevers H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 2015 ; 25 : 100–108. [Google Scholar]
- Moyret-Lalle C, Pommier R, Bouard C, et al. Plasticité des cellules cancéreuses et dissémination métastatique. Med Sci (Paris) 2016 ; 32 : 725–731. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978 ; 4 : 7–25. [PubMed] [Google Scholar]
- Scadden DT. Nice neighborhood: Emerging concepts of the stem cell niche. Cell 2014 ; 157 : 41–50. [CrossRef] [PubMed] [Google Scholar]
- Jagut M, Huynh J-R. Régulation des cellules souches de la lignée germinale. Med Sci (Paris) 2007 ; 23 : 611–618. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Barroca V, Lassalle B, Allemand I, et al. Des progéniteurs transplantés peuvent générer des cellules souches germinales. Med Sci (Paris) 2009 ; 25 : 893–895. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Adler CE. Sánchez Alvarado A. Types or states? Cellular dynamics and regenerative potential. Trends Cell Biol. 2015 ; 25 : 687–696. [Google Scholar]
- Zipori D. À la recherche d’une définition moléculaire plus que descriptive pour les cellules souches. Med Sci (Paris) 2011 ; 27 : 303–307. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function?. Cell 2001 ; 105 : 829–841. [CrossRef] [PubMed] [Google Scholar]
- Mikkers H, Frisen J. Deconstructing stemness. J Eur Mol Biol Organ 2005 ; 24 : 2715–2719. [CrossRef] [Google Scholar]
- Laplane L. Cancer stem cells: Philosophy and therapies. Cambridge, MA : Harvard University Press, 2016. [CrossRef] [Google Scholar]
- Gupta PB, Fillmore CM, Jiang G, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011 ; 146 : 633–644. [CrossRef] [PubMed] [Google Scholar]
- Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014 ; 14 : 275–291. [Google Scholar]
- Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature 2001 ; 414 : 105–111. [CrossRef] [PubMed] [Google Scholar]
- Häfner S, Coulombel L. L’oligarchie contestée des cellules souches cancéreuses. Med Sci (Paris) 2009 ; 25 : 227–228. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Reynaud D, Pietras E, Barry-Holson K, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011 ; 20 : 661–673. [CrossRef] [PubMed] [Google Scholar]
- Welner RS, Amabile G, Bararia D, et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 2015 ; 27 : 671–681. [CrossRef] [PubMed] [Google Scholar]
- Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci USA 2011 ; 108 : 7950–7955. [CrossRef] [Google Scholar]
- Vermeulen L, De Sousa EMF, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010 ; 12 : 468–476. [CrossRef] [PubMed] [Google Scholar]
- Thirant C, Bessette B, Varlet P, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One 2011 ; 6 : e16375. [CrossRef] [PubMed] [Google Scholar]
- Latil M, Nassar D, Beck B, et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 2017 ; 20 : 191–204.e5. [Google Scholar]
- Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013 ; 154 : 61–74. [CrossRef] [PubMed] [Google Scholar]
- Whitson RJ, Oro AE. Soil primes the seed: Epigenetic landscape drives tumor behavior. Cell Stem Cell 2017 ; 20 : 149–150. [Google Scholar]
- Emanuel PD, Bates LJ, Castleberry RP, et al. Selective hypersensitivity to granulocyte-macrophage colony-stimulating factor by juvenile chronic myeloid leukemia hematopoietic progenitors. Blood 1991 ; 77 : 925–929. [Google Scholar]
- Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAK-STAT 2012 ; 1 : 184–190. [CrossRef] [PubMed] [Google Scholar]
- Vainchenker W, Constantinescu SN, Plo I, et al. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Research 2016; 5 : 700. [Google Scholar]
- Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 2014 ; 512 : 78–81. [CrossRef] [PubMed] [Google Scholar]
- Landau DA, Clement K, Ziller MJ, et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 2014 ; 26 : 813–825. [CrossRef] [PubMed] [Google Scholar]
- Merlevede J, Droin N, Qin T, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 2016 ; 7 : 10767. [CrossRef] [PubMed] [Google Scholar]
- Sager H, Davis WC, Dobbelaere DA, et al. Macrophage-parasite relationship in theileriosis. Reversible phenotypic and functional dedifferentiation of macrophages infected with Theileria annulata. J Leukoc Biol 1997 ; 61 : 459–468. [PubMed] [Google Scholar]
- Sager H, Bertoni G, Jungi TW. Differences between B cell and macrophage transformation by the bovine parasite, Theileria annulata: a clonal approach. J Immunol 1998 ; 161 : 335–341. [PubMed] [Google Scholar]
- Cheeseman K, Certad G, Weitzman JB. Parasites et cancer : existe-t-il un lien ?. Med Sci (Paris) 2016 ; 32 : 867–873. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004 ; 6 : 587–596. [CrossRef] [PubMed] [Google Scholar]
- Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003 ; 17 : 3029–3035. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.