Free Access
Med Sci (Paris)
Volume 33, Number 5, Mai 2017
Page(s) 506 - 511
Section M/S Revues
Published online 14 June 2017
  1. Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 2016 ; 12 : 452–466. [PubMed] [Google Scholar]
  2. Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015 ; 11 : 547–564. [CrossRef] [PubMed] [Google Scholar]
  3. Fire AZ. Gene silencing by double-stranded RNA (Nobel Lecture). Angew Chem Int Ed Engl 2007 ; 46 : 6966–6984. [CrossRef] [PubMed] [Google Scholar]
  4. Mello CC. Return to the RNAi world: rethinking gene expression and evolution (Nobel Lecture). Angew Chem Int Ed Engl 2007 ; 46 : 6985–6994. [CrossRef] [PubMed] [Google Scholar]
  5. Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013 ; 12 : 2061–2072. [CrossRef] [PubMed] [Google Scholar]
  6. Coolen M, Bally-Cuif L. Microrégulation aux frontières (cérébrales). Med Sci (Paris) 2008 ; 24 : 787–789. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 2014 ; 15 : 565–576. [CrossRef] [PubMed] [Google Scholar]
  8. Coolen M, Bally-Cuif L. Les multiples facettes d’un petit régulateur. Med Sci (Paris) 2013 ; 29 : 1010–1017. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Bicker S, Lackinger M, Weiss K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 2014 ; 71 : 3987–4005. [CrossRef] [PubMed] [Google Scholar]
  10. Bak M, Silahtaroglu A, Moller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008 ; 14 : 432–444. [PubMed] [Google Scholar]
  11. Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 2014 ; 19 : 848–852. [CrossRef] [PubMed] [Google Scholar]
  12. Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004 ; 5 : R68. [CrossRef] [PubMed] [Google Scholar]
  13. Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 2014 ; 101 : 1524–1530. [CrossRef] [PubMed] [Google Scholar]
  14. Papaioannou MD, Nef S. microRNAs in the testis: building up male fertility. J Androl 2010 ; 31 : 26–33. [CrossRef] [PubMed] [Google Scholar]
  15. Lannes J, L’Hote D, Garrel G, et al. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 2015 ; 29 : 364–372. [CrossRef] [PubMed] [Google Scholar]
  16. Lannes J, L’Hote D, Fernandez-Vega A, et al. A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016 ; 6 : 31563. [CrossRef] [PubMed] [Google Scholar]
  17. Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 2013 ; 341 : 71–73. [CrossRef] [PubMed] [Google Scholar]
  18. Ahmed K, LaPierre MP, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest 2017 ; 127 : 1061–1074. [PubMed] [Google Scholar]
  19. Elks CE, Perry JR, Sulem P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet 2010 ; 42 : 1077–1085. [CrossRef] [PubMed] [Google Scholar]
  20. Sangiao-Alvarellos S, Manfredi-Lozano M, Ruiz-Pino F, et al. Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty. Endocrinology 2013 ; 154 : 942–955. [CrossRef] [PubMed] [Google Scholar]
  21. Prevot V. Puberty in mice and rats. In Plant TM, Zeleznik J, eds. Knobil and Neill’s Physiology of Reproduction. New York : Elsevier, 2015 : pp 1395–1439. [CrossRef] [Google Scholar]
  22. Tena-Sempere M. Physiological Mechanisms for the Metabolic Control of Reproduction. In : Plant TM, Zeleznik J, eds. Knobil and Neill’s Physiology of Reproduction. New York : Elsevier, 2015 : pp 1605–1636. [CrossRef] [Google Scholar]
  23. Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 2016 ; 19 : 835–844. [CrossRef] [PubMed] [Google Scholar]
  24. Kuiri-Hanninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr 2014 ; 82 : 73–80. [CrossRef] [PubMed] [Google Scholar]
  25. Bellefontaine N, Chachlaki K, Parkash J, et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J Clin Invest 2014 ; 124 : 2550–2559. [CrossRef] [PubMed] [Google Scholar]
  26. Belsham DD, Mellon PL. Transcription factors Oct-1 and C/EBPbeta (CCAAT/enhancer-binding protein-beta) are involved in the glutamate/nitric oxide/cyclic-guanosine 5’-monophosphate-mediated repression of mediated repression of gonadotropin-releasing hormone gene expression. Mol Endocrinol 2000 ; 14 : 212–228. [PubMed] [Google Scholar]
  27. Delpierre C, Lepeule J, Cordier S, et al. DOHaD - Les apports récents de l’épidémiologie. Med Sci (Paris) 2016 ; 32 : 21–26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Junien C, Panchenko P, Pirola L, et al. Le nouveau paradigme de l’origine développementale de la santé et des maladies (DOHaD): épigénétique, environnement : preuves et chaînons manquants. Med Sci (Paris) 2016 ; 32 : 27–34. [Google Scholar]
  29. Lomniczi A, Loche A, Castellano JM, et al. Epigenetic control of female puberty. Nat Neurosci 2013 ; 16 : 281–289. [CrossRef] [PubMed] [Google Scholar]
  30. Lomniczi A, Wright H, Castellano JM, et al. Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression. Nat Commun 2015 ; 6 : 10195. [PubMed] [Google Scholar]
  31. Mauduit C, Siddeek B, Benahmed M. Origine développementale et environnementale de l’infertilité masculine : rôle des perturbateurs hormonaux. Med Sci (Paris) 2016 ; 32 : 45–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Parent AS, Franssen D, Fudvoye J, et al. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015 ; 38 : 12–36. [CrossRef] [PubMed] [Google Scholar]
  33. Romani M, Pistillo MP, Banelli B. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. Biomed Res Int 2015 ; 2015 : 587983. [CrossRef] [PubMed] [Google Scholar]
  34. Derghal A, Djelloul M, Trouslard J, Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci 2016 ; 10 : 318. [PubMed] [Google Scholar]
  35. Junien C, Panchenko P, Fneich S, et al. Épigénétique et réponses transgénérationnelles aux impacts de l’environnement : des faits aux lacunes. Med Sci (Paris) 2016 ; 32 : 35–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Crowley WF, Balasubramanian R. MicroRNA-7a2 suppression causes hypogonadotropism and uncovers signaling pathways in gonadotropes. J Clin Invest 2017 ; 127 : 796–797. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.