Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 5, Mai 2017
|
|
---|---|---|
Page(s) | 506 - 511 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173305014 | |
Publié en ligne | 14 juin 2017 |
- Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 2016 ; 12 : 452–466. [PubMed] [Google Scholar]
- Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015 ; 11 : 547–564. [CrossRef] [PubMed] [Google Scholar]
- Fire AZ. Gene silencing by double-stranded RNA (Nobel Lecture). Angew Chem Int Ed Engl 2007 ; 46 : 6966–6984. [CrossRef] [PubMed] [Google Scholar]
- Mello CC. Return to the RNAi world: rethinking gene expression and evolution (Nobel Lecture). Angew Chem Int Ed Engl 2007 ; 46 : 6985–6994. [CrossRef] [PubMed] [Google Scholar]
- Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013 ; 12 : 2061–2072. [CrossRef] [PubMed] [Google Scholar]
- Coolen M, Bally-Cuif L. Microrégulation aux frontières (cérébrales). Med Sci (Paris) 2008 ; 24 : 787–789. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 2014 ; 15 : 565–576. [CrossRef] [PubMed] [Google Scholar]
- Coolen M, Bally-Cuif L. Les multiples facettes d’un petit régulateur. Med Sci (Paris) 2013 ; 29 : 1010–1017. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bicker S, Lackinger M, Weiss K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci 2014 ; 71 : 3987–4005. [CrossRef] [PubMed] [Google Scholar]
- Bak M, Silahtaroglu A, Moller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA 2008 ; 14 : 432–444. [PubMed] [Google Scholar]
- Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry 2014 ; 19 : 848–852. [CrossRef] [PubMed] [Google Scholar]
- Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004 ; 5 : R68. [CrossRef] [PubMed] [Google Scholar]
- Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 2014 ; 101 : 1524–1530. [CrossRef] [PubMed] [Google Scholar]
- Papaioannou MD, Nef S. microRNAs in the testis: building up male fertility. J Androl 2010 ; 31 : 26–33. [CrossRef] [PubMed] [Google Scholar]
- Lannes J, L’Hote D, Garrel G, et al. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 2015 ; 29 : 364–372. [CrossRef] [PubMed] [Google Scholar]
- Lannes J, L’Hote D, Fernandez-Vega A, et al. A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016 ; 6 : 31563. [CrossRef] [PubMed] [Google Scholar]
- Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science 2013 ; 341 : 71–73. [CrossRef] [PubMed] [Google Scholar]
- Ahmed K, LaPierre MP, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest 2017 ; 127 : 1061–1074. [PubMed] [Google Scholar]
- Elks CE, Perry JR, Sulem P, et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet 2010 ; 42 : 1077–1085. [CrossRef] [PubMed] [Google Scholar]
- Sangiao-Alvarellos S, Manfredi-Lozano M, Ruiz-Pino F, et al. Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty. Endocrinology 2013 ; 154 : 942–955. [CrossRef] [PubMed] [Google Scholar]
- Prevot V. Puberty in mice and rats. In Plant TM, Zeleznik J, eds. Knobil and Neill’s Physiology of Reproduction. New York : Elsevier, 2015 : pp 1395–1439. [CrossRef] [Google Scholar]
- Tena-Sempere M. Physiological Mechanisms for the Metabolic Control of Reproduction. In : Plant TM, Zeleznik J, eds. Knobil and Neill’s Physiology of Reproduction. New York : Elsevier, 2015 : pp 1605–1636. [CrossRef] [Google Scholar]
- Messina A, Langlet F, Chachlaki K, et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat Neurosci 2016 ; 19 : 835–844. [CrossRef] [PubMed] [Google Scholar]
- Kuiri-Hanninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr 2014 ; 82 : 73–80. [CrossRef] [PubMed] [Google Scholar]
- Bellefontaine N, Chachlaki K, Parkash J, et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J Clin Invest 2014 ; 124 : 2550–2559. [CrossRef] [PubMed] [Google Scholar]
- Belsham DD, Mellon PL. Transcription factors Oct-1 and C/EBPbeta (CCAAT/enhancer-binding protein-beta) are involved in the glutamate/nitric oxide/cyclic-guanosine 5’-monophosphate-mediated repression of mediated repression of gonadotropin-releasing hormone gene expression. Mol Endocrinol 2000 ; 14 : 212–228. [PubMed] [Google Scholar]
- Delpierre C, Lepeule J, Cordier S, et al. DOHaD - Les apports récents de l’épidémiologie. Med Sci (Paris) 2016 ; 32 : 21–26. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Junien C, Panchenko P, Pirola L, et al. Le nouveau paradigme de l’origine développementale de la santé et des maladies (DOHaD): épigénétique, environnement : preuves et chaînons manquants. Med Sci (Paris) 2016 ; 32 : 27–34. [Google Scholar]
- Lomniczi A, Loche A, Castellano JM, et al. Epigenetic control of female puberty. Nat Neurosci 2013 ; 16 : 281–289. [CrossRef] [PubMed] [Google Scholar]
- Lomniczi A, Wright H, Castellano JM, et al. Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression. Nat Commun 2015 ; 6 : 10195. [PubMed] [Google Scholar]
- Mauduit C, Siddeek B, Benahmed M. Origine développementale et environnementale de l’infertilité masculine : rôle des perturbateurs hormonaux. Med Sci (Paris) 2016 ; 32 : 45–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Parent AS, Franssen D, Fudvoye J, et al. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015 ; 38 : 12–36. [CrossRef] [PubMed] [Google Scholar]
- Romani M, Pistillo MP, Banelli B. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. Biomed Res Int 2015 ; 2015 : 587983. [CrossRef] [PubMed] [Google Scholar]
- Derghal A, Djelloul M, Trouslard J, Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci 2016 ; 10 : 318. [PubMed] [Google Scholar]
- Junien C, Panchenko P, Fneich S, et al. Épigénétique et réponses transgénérationnelles aux impacts de l’environnement : des faits aux lacunes. Med Sci (Paris) 2016 ; 32 : 35–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Crowley WF, Balasubramanian R. MicroRNA-7a2 suppression causes hypogonadotropism and uncovers signaling pathways in gonadotropes. J Clin Invest 2017 ; 127 : 796–797. [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.