Free Access
Issue
Med Sci (Paris)
Volume 33, Number 5, Mai 2017
Page(s) 499 - 505
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173305013
Published online 14 June 2017
  1. Nègre N, Cavalli G. Polycomb maîtrise la destinée cellulaire. Med/Sci (Paris) 2006 ; 22 : 1033–1035. [Google Scholar]
  2. Turner SA, Bracken AP. A “Complex” Issue: Deciphering the Role of Variant PRC1 in escs. Cell Stem Cell 2013 ; 12 : 145–146. [Google Scholar]
  3. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004 ; 15 : 57–67. [CrossRef] [PubMed] [Google Scholar]
  4. Shen X, Liu Y, Hsu Y-J, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 2008 ; 32 : 491–502. [CrossRef] [PubMed] [Google Scholar]
  5. Vizán P, Beringer M, Ballaré C, et al. Role of PRC2-associated factors in stem cells and disease. FEBS J 2015 ; 282 : 1723–1735. [CrossRef] [PubMed] [Google Scholar]
  6. Simon J, Chiang A, Bender W, et al. Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 1993 ; 158 : 131–144. [PubMed] [Google Scholar]
  7. Woo CJ, Kharchenko PV, Daheron L, et al. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 2010 ; 140 : 99–110. [PubMed] [Google Scholar]
  8. Cuddapah S, Roh T-Y, Cui K, et al. A novel human polycomb binding site acts as a functional polycomb response element in Drosophila. Plos One 2012 ; 7 : e36365. [PubMed] [Google Scholar]
  9. Margueron R, Justin N, Ohno K, et al. Role of the polycomb protein Eed in the propagation of repressive histone marks. Nature 2009 ; 461 : 762–767. [CrossRef] [PubMed] [Google Scholar]
  10. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006 ; 125 : 301–313. [PubMed] [Google Scholar]
  11. Mendenhall EM, Koche RP, Truong T, et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. Plos Genet 2010 ; 6 : e1001244. [CrossRef] [PubMed] [Google Scholar]
  12. Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 2010 ; 35 : 323–332. [CrossRef] [PubMed] [Google Scholar]
  13. Zhao J, Sun BK, Erwin JA, et al. Polycomb proteins targeted by a short repeat RNA to the mouse X-chromosome. Science 2008 ; 322 : 750–756. [CrossRef] [PubMed] [Google Scholar]
  14. da Rocha ST, Boeva V, Escamilla-Del-Arenal M, et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 2014 ; 53 : 301–316. [CrossRef] [PubMed] [Google Scholar]
  15. Kaneko S, Bonasio R, Saldaña-Meyer R, et al. Interactions between JARID2 and noncoding rnas regulate PRC2 recruitment to chromatin. Mol Cell 2014 ; 53 : 290–300. [CrossRef] [PubMed] [Google Scholar]
  16. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002 ; 298 : 1039–1043. [CrossRef] [PubMed] [Google Scholar]
  17. Wang L, Brown JL, Cao R, et al. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 2004 ; 14 : 637–646. [CrossRef] [PubMed] [Google Scholar]
  18. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006 ; 6 : 846–856. [CrossRef] [PubMed] [Google Scholar]
  19. Blackledge NP, Farcas AM, Kondo T, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014 ; 157 : 1445–1459. [PubMed] [Google Scholar]
  20. Cooper S, Dienstbier M, Hassan R, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 Recruitment. Cell Rep 2014 ; 7 : 1456–1470. [CrossRef] [PubMed] [Google Scholar]
  21. Kalb R, Latwiel S, Baymaz HI, et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 2014 ; 21 : 569–571. [CrossRef] [PubMed] [Google Scholar]
  22. Kim E, Kim M, Woo D-H, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 2013 ; 23 : 839–852. [CrossRef] [PubMed] [Google Scholar]
  23. Lee JM, Lee JS, Kim H, et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012 ; 48 : 572–586. [CrossRef] [PubMed] [Google Scholar]
  24. Sanulli S, Justin N, Teissandier A, et al. Jarid2 methylation via the PRC2 complex regulates h3k27me3 deposition during cell differentiation. Mol Cell 2015 ; 57 : 769–783. [CrossRef] [PubMed] [Google Scholar]
  25. Shi B, Liang J, Yang X, et al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 2007 ; 27 : 5105–5119. [CrossRef] [PubMed] [Google Scholar]
  26. Li X, Gonzalez ME, Toy K, et al. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol 2009 ; 175 : 1246–1254. [PubMed] [Google Scholar]
  27. Lee ST, Li Z, Wu Z, et al. Context-specific regulation of NF-κb target gene expression by EZH2 in breast cancers. Mol Cell 2011 ; 43 : 798–810. [CrossRef] [PubMed] [Google Scholar]
  28. Xu K, Wu ZJ, Groner AC, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 2012 ; 338 : 1465–1469. [CrossRef] [PubMed] [Google Scholar]
  29. Yan J, Li B, Lin B, et al. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood 2016 ; 128 : 948–958. [Google Scholar]
  30. Sasaki D, Imaizumi Y, Hasegawa H, et al. Overexpression of Enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica 2011 ; 96 : 712–719. [CrossRef] [PubMed] [Google Scholar]
  31. Visser HP, Gunster MJ, Kluin-Nelemans HC, et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 2001 ; 112 : 950–958. [PubMed] [Google Scholar]
  32. Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010 ; 42 : 181–185. [CrossRef] [PubMed] [Google Scholar]
  33. Sneeringer CJ, Scott MP, Kuntz KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 2010 ; 107 : 20980–20985. [CrossRef] [PubMed] [Google Scholar]
  34. Xu F, Li X, Wu L, et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol 2011 ; 90 : 643–653. [CrossRef] [PubMed] [Google Scholar]
  35. Völkel P, Dupret B, Le Bourhis X, et al. Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 2015 ; 7 : 175–193. [PubMed] [Google Scholar]
  36. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010 ; 42 : 722–726. [CrossRef] [PubMed] [Google Scholar]
  37. Nikoloski G, Langemeijer SMC, Kuiper RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010 ; 42 : 665–667. [CrossRef] [PubMed] [Google Scholar]
  38. Sashida G, Harada H, Matsui H, et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun 2014 ; 5 : 4177. [PubMed] [Google Scholar]
  39. Momparler RL, Côté S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs 2015 ; 24 : 1031–1043. [CrossRef] [PubMed] [Google Scholar]
  40. Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012 ; 8 : 890–896. [PubMed] [Google Scholar]
  41. Mccabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012 ; 492 : 108–112. [CrossRef] [PubMed] [Google Scholar]
  42. Qi W, Chan H, Teng L, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 2012 ; 109 : 21360–21365. [CrossRef] [PubMed] [Google Scholar]
  43. Kim KH, Kim W, Howard TP, et al. SWI/SNF mutant cancers depend upon catalytic and non–catalytic activity of EZH2. Nat Med 2015 ; 21 : 1491–1496. [CrossRef] [PubMed] [Google Scholar]
  44. Serresi M, Gargiulo G, Proost N, et al. Polycomb repressive complex 2 is a barrier to KRAS-driven inflammation and epithelial-mesenchymal transition in non-small-cell lung cancer. Cancer Cell 2016 ; 29 : 17–31. [CrossRef] [PubMed] [Google Scholar]
  45. Chaib H, Prébet T, Vey N, Collette Y. Histone méthyltransférases : une nouvelle classe de cibles thérapeutiques dans le traitement du cancer ? Med Sci (Paris) 2011 ; 27 : 725–732. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.