Free Access
Med Sci (Paris)
Volume 33, Number 4, Avril 2017
Page(s) 423 - 431
Section M/S Revues
Published online 12 May 2017
  1. Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010 ; 37 : 13–25. [CrossRef] [PubMed] [Google Scholar]
  2. Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery 2004 ; 54 : 131–140 ; discussion 41–2. [CrossRef] [PubMed] [Google Scholar]
  3. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008 ; 57 : 178–201. [CrossRef] [PubMed] [Google Scholar]
  4. Gosselet F, Candela P, Cecchelli R, Fenart L. La barrière hémato-encéphalique. Med Sci (Paris) 2011 ; 27 : 987–992. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007 ; 24 : 1745–1758. [CrossRef] [PubMed] [Google Scholar]
  6. Johnsen KB, Moos T. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 2016 ; 222 : 32–46. [CrossRef] [PubMed] [Google Scholar]
  7. DeBault LE, Kahn LE, Frommes SP, Cancilla PA. Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In vitro 1979 ; 15 : 473–487. [CrossRef] [PubMed] [Google Scholar]
  8. Bowman PD, Ennis SR, Rarey KE, et al. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 1983 ; 14 : 396–402. [CrossRef] [PubMed] [Google Scholar]
  9. Helms HC, Brodin B. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes. Methods Mol Biol 2014 ; 1135 : 365–382. [CrossRef] [PubMed] [Google Scholar]
  10. Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 1994 ; 126 : 465–473. [CrossRef] [PubMed] [Google Scholar]
  11. Bicker J, Alves G, Fortuna A, Falcao A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014 ; 87 : 409–432. [CrossRef] [PubMed] [Google Scholar]
  12. Cecchelli R, Aday S, Sevin E, et al. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 2014 ; 9 : e99733. [CrossRef] [PubMed] [Google Scholar]
  13. Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 2012 ; 30 : 783–791. [CrossRef] [PubMed] [Google Scholar]
  14. Banerjee J, Shi Y, Azevedo HS. In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug discovery Today 2016 ; 21 : 1367–1386. [CrossRef] [PubMed] [Google Scholar]
  15. Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009 ; 31 : 497–511. [CrossRef] [PubMed] [Google Scholar]
  16. Vandenhaute E, Drolez A, Sevin E, et al. Adapting coculture In vitro models of the blood-brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Lab Invest 2016 ; 96 : 588–598. [CrossRef] [PubMed] [Google Scholar]
  17. Gosselet F, Saint-Pol J, Candela P, Fenart L. Amyloid-beta peptides, Alzheimer’s disease and the blood-brain barrier. Curr Alzheimer Res 2013 ; 10 : 1015–1033. [CrossRef] [PubMed] [Google Scholar]
  18. Attwell D, Mishra A, Hall CN, et al. What is a pericyte? J Cereb Blood Flow Metab 2016 ; 36 : 451–455. [CrossRef] [PubMed] [Google Scholar]
  19. Shawahna R, Decleves X, Scherrmann JM. Hurdles with using In vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab 2013 ; 14 : 120–136. [CrossRef] [PubMed] [Google Scholar]
  20. Prat A, Biernacki K, Becher B, Antel JP. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines. J Neuropathol Exp Neurol 2000 ; 59 : 129–136. [CrossRef] [PubMed] [Google Scholar]
  21. Larochelle C, Lecuyer MA, Alvarez JI, et al. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 2015 ; 78 : 39–53. [CrossRef] [PubMed] [Google Scholar]
  22. Hellinger E, Veszelka S, Toth AE, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 2012 ; 82 : 340–351. [CrossRef] [PubMed] [Google Scholar]
  23. Prieto P, Blaauboer BJ, de Boer AG, et al. Blood-brain barrier In vitro models and their application in toxicology. The report and recommendations of ECVAM Workshop 49. Alternatives to laboratory animals : ATLA 2004 ; 32 : 37–50. [PubMed] [Google Scholar]
  24. Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016 ; 36 : 862–890. [CrossRef] [PubMed] [Google Scholar]
  25. Coisne C, Dehouck L, Faveeuw C, et al. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 2005 ; 85 : 734–746. [CrossRef] [PubMed] [Google Scholar]
  26. Omidi Y, Campbell L, Barar J, et al. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 2003 ; 990 : 95–112. [CrossRef] [PubMed] [Google Scholar]
  27. Forster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine In vitro system. J Physiol 2005 ; 565 : 475–486. [CrossRef] [PubMed] [Google Scholar]
  28. Perriere N, Yousif S, Cazaubon S, et al. A functional In vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res 2007 ; 1150 : 1–13. [CrossRef] [PubMed] [Google Scholar]
  29. Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 2009 ; 54 : 253–263. [CrossRef] [PubMed] [Google Scholar]
  30. Patabendige A, Skinner RA, Morgan L. Joan Abbott N. A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013 ; 1521 : 16–30. [CrossRef] [PubMed] [Google Scholar]
  31. Dehouck MP, Meresse S, Delorme P, et al. An easier, reproducible, and mass-production method to study the blood-brain barrier In vitro. J Neurochem 1990 ; 54 : 1798–1801. [CrossRef] [PubMed] [Google Scholar]
  32. Fenart L, Buee-Scherrer V, Descamps L, et al. Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an In vitro model of the blood-brain barrier. Pharm Res 1998 ; 15 : 993–1000. [CrossRef] [PubMed] [Google Scholar]
  33. Culot M, Lundquist S, Vanuxeem D, et al. An In vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 2008 ; 22 : 799–811. [CrossRef] [PubMed] [Google Scholar]
  34. Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 2009 ; 59 : 404–413. [CrossRef] [PubMed] [Google Scholar]
  35. Weksler BB, Subileau EA, Perriere N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Faseb J 2005 ; 19 : 1872–1874. [PubMed] [Google Scholar]
  36. Biemans EA, Jakel L, de Waal RM, et al. Limitations of the hCMEC/D3 cell line as a model for Abeta clearance by the human blood-brain barrier. J Neurosci Res 2016. 10.1002. [Google Scholar]
  37. Ohtsuki S, Ikeda C, Uchida Y, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 2013 ; 10 : 289–296. [CrossRef] [PubMed] [Google Scholar]
  38. Mkrtchyan H, Scheler S, Klein I, et al. Molecular cytogenetic characterization of the human cerebral microvessel endothelial cell line hCMEC/D3. Cytogenet Genome Res 2009 ; 126 : 313–317. [CrossRef] [PubMed] [Google Scholar]
  39. Boyer-Di Ponio J, El-Ayoubi F, Glacial F, et al. Instruction of circulating endothelial progenitors In vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS One 2014 ; 9 : e84179. [CrossRef] [PubMed] [Google Scholar]
  40. Stebbins MJ, Wilson HK, Canfield SG, et al. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods (San Diego, Calif) 2016 ; 101 : 93–102. [CrossRef] [Google Scholar]
  41. Eigenmann DE, Durig C, Jahne EA, et al. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 2016 ; 103 : 118–126. [CrossRef] [PubMed] [Google Scholar]
  42. Oller-Salvia B, Sanchez-Navarro M, Ciudad S, et al. MiniAp-4: A venom-inspired peptidomimetic for brain delivery. Angewandte Chemie 2016 ; 55 : 572–575. [CrossRef] [Google Scholar]
  43. Kuntz M, Candela P, Saint-Pol J, et al. Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-beta peptides in an In vitro model of the human blood-brain barrier. J Alzheimer Dis 2015 ; 48 : 849–862. [CrossRef] [Google Scholar]
  44. Drolez A, Vandenhaute E, Julien S, et al. Selection of a relevant In vitro blood-brain barrier model to investigate pro-metastatic features of human breast cancer cell lines. PLoS One 2016 ; 11 : e0151155. [CrossRef] [PubMed] [Google Scholar]
  45. Drappatz J, Brenner A, Wong ET, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res 2013 ; 19 : 1567–1576. [CrossRef] [PubMed] [Google Scholar]
  46. Cecchelli R, Dehouck B, Descamps L, et al. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 1999 ; 36 : 165–178. [CrossRef] [PubMed] [Google Scholar]
  47. Palmiotti CA, Prasad S, Naik P, et al. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res 2014 ; 31 : 3229–3250. [CrossRef] [PubMed] [Google Scholar]
  48. Booth R, Kim H. Characterization of a microfluidic In vitro model of the blood-brain barrier (muBBB). Lab Chip 2012 ; 12 : 1784–1792. [CrossRef] [PubMed] [Google Scholar]
  49. Gosselet F. Apolipoprotéine E et intégrité de la barrière hémato-encéphalique. Med Sci (Paris) 2012 ; 28 : 920–923. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Collin L. Ouvrir le cerveau à de nouvelles thérapies. Med Sci (Paris) 2014 ; 30 : 486–488. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Pedroso DC, Tellechea A, Moura L, et al. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. PLoS One 2011 ; 6 : e16114. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.