Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 4, Avril 2017
|
|
---|---|---|
Page(s) | 423 - 431 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173304013 | |
Publié en ligne | 12 mai 2017 |
- Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010 ; 37 : 13–25. [CrossRef] [PubMed] [Google Scholar]
- Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery 2004 ; 54 : 131–140 ; discussion 41–2. [CrossRef] [PubMed] [Google Scholar]
- Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008 ; 57 : 178–201. [CrossRef] [PubMed] [Google Scholar]
- Gosselet F, Candela P, Cecchelli R, Fenart L. La barrière hémato-encéphalique. Med Sci (Paris) 2011 ; 27 : 987–992. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007 ; 24 : 1745–1758. [CrossRef] [PubMed] [Google Scholar]
- Johnsen KB, Moos T. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 2016 ; 222 : 32–46. [CrossRef] [PubMed] [Google Scholar]
- DeBault LE, Kahn LE, Frommes SP, Cancilla PA. Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In vitro 1979 ; 15 : 473–487. [CrossRef] [PubMed] [Google Scholar]
- Bowman PD, Ennis SR, Rarey KE, et al. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 1983 ; 14 : 396–402. [CrossRef] [PubMed] [Google Scholar]
- Helms HC, Brodin B. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes. Methods Mol Biol 2014 ; 1135 : 365–382. [CrossRef] [PubMed] [Google Scholar]
- Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R. Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 1994 ; 126 : 465–473. [CrossRef] [PubMed] [Google Scholar]
- Bicker J, Alves G, Fortuna A, Falcao A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014 ; 87 : 409–432. [CrossRef] [PubMed] [Google Scholar]
- Cecchelli R, Aday S, Sevin E, et al. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 2014 ; 9 : e99733. [CrossRef] [PubMed] [Google Scholar]
- Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 2012 ; 30 : 783–791. [CrossRef] [PubMed] [Google Scholar]
- Banerjee J, Shi Y, Azevedo HS. In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug discovery Today 2016 ; 21 : 1367–1386. [CrossRef] [PubMed] [Google Scholar]
- Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009 ; 31 : 497–511. [CrossRef] [PubMed] [Google Scholar]
- Vandenhaute E, Drolez A, Sevin E, et al. Adapting coculture In vitro models of the blood-brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Lab Invest 2016 ; 96 : 588–598. [CrossRef] [PubMed] [Google Scholar]
- Gosselet F, Saint-Pol J, Candela P, Fenart L. Amyloid-beta peptides, Alzheimer’s disease and the blood-brain barrier. Curr Alzheimer Res 2013 ; 10 : 1015–1033. [CrossRef] [PubMed] [Google Scholar]
- Attwell D, Mishra A, Hall CN, et al. What is a pericyte? J Cereb Blood Flow Metab 2016 ; 36 : 451–455. [CrossRef] [PubMed] [Google Scholar]
- Shawahna R, Decleves X, Scherrmann JM. Hurdles with using In vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab 2013 ; 14 : 120–136. [CrossRef] [PubMed] [Google Scholar]
- Prat A, Biernacki K, Becher B, Antel JP. B7 expression and antigen presentation by human brain endothelial cells: requirement for proinflammatory cytokines. J Neuropathol Exp Neurol 2000 ; 59 : 129–136. [CrossRef] [PubMed] [Google Scholar]
- Larochelle C, Lecuyer MA, Alvarez JI, et al. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann Neurol 2015 ; 78 : 39–53. [CrossRef] [PubMed] [Google Scholar]
- Hellinger E, Veszelka S, Toth AE, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 2012 ; 82 : 340–351. [CrossRef] [PubMed] [Google Scholar]
- Prieto P, Blaauboer BJ, de Boer AG, et al. Blood-brain barrier In vitro models and their application in toxicology. The report and recommendations of ECVAM Workshop 49. Alternatives to laboratory animals : ATLA 2004 ; 32 : 37–50. [PubMed] [Google Scholar]
- Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016 ; 36 : 862–890. [CrossRef] [PubMed] [Google Scholar]
- Coisne C, Dehouck L, Faveeuw C, et al. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 2005 ; 85 : 734–746. [CrossRef] [PubMed] [Google Scholar]
- Omidi Y, Campbell L, Barar J, et al. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 2003 ; 990 : 95–112. [CrossRef] [PubMed] [Google Scholar]
- Forster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine In vitro system. J Physiol 2005 ; 565 : 475–486. [CrossRef] [PubMed] [Google Scholar]
- Perriere N, Yousif S, Cazaubon S, et al. A functional In vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res 2007 ; 1150 : 1–13. [CrossRef] [PubMed] [Google Scholar]
- Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 2009 ; 54 : 253–263. [CrossRef] [PubMed] [Google Scholar]
- Patabendige A, Skinner RA, Morgan L. Joan Abbott N. A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013 ; 1521 : 16–30. [CrossRef] [PubMed] [Google Scholar]
- Dehouck MP, Meresse S, Delorme P, et al. An easier, reproducible, and mass-production method to study the blood-brain barrier In vitro. J Neurochem 1990 ; 54 : 1798–1801. [CrossRef] [PubMed] [Google Scholar]
- Fenart L, Buee-Scherrer V, Descamps L, et al. Inhibition of P-glycoprotein: rapid assessment of its implication in blood-brain barrier integrity and drug transport to the brain by an In vitro model of the blood-brain barrier. Pharm Res 1998 ; 15 : 993–1000. [CrossRef] [PubMed] [Google Scholar]
- Culot M, Lundquist S, Vanuxeem D, et al. An In vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 2008 ; 22 : 799–811. [CrossRef] [PubMed] [Google Scholar]
- Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 2009 ; 59 : 404–413. [CrossRef] [PubMed] [Google Scholar]
- Weksler BB, Subileau EA, Perriere N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. Faseb J 2005 ; 19 : 1872–1874. [PubMed] [Google Scholar]
- Biemans EA, Jakel L, de Waal RM, et al. Limitations of the hCMEC/D3 cell line as a model for Abeta clearance by the human blood-brain barrier. J Neurosci Res 2016. 10.1002. [Google Scholar]
- Ohtsuki S, Ikeda C, Uchida Y, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 2013 ; 10 : 289–296. [CrossRef] [PubMed] [Google Scholar]
- Mkrtchyan H, Scheler S, Klein I, et al. Molecular cytogenetic characterization of the human cerebral microvessel endothelial cell line hCMEC/D3. Cytogenet Genome Res 2009 ; 126 : 313–317. [CrossRef] [PubMed] [Google Scholar]
- Boyer-Di Ponio J, El-Ayoubi F, Glacial F, et al. Instruction of circulating endothelial progenitors In vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS One 2014 ; 9 : e84179. [CrossRef] [PubMed] [Google Scholar]
- Stebbins MJ, Wilson HK, Canfield SG, et al. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods (San Diego, Calif) 2016 ; 101 : 93–102. [CrossRef] [Google Scholar]
- Eigenmann DE, Durig C, Jahne EA, et al. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 2016 ; 103 : 118–126. [CrossRef] [PubMed] [Google Scholar]
- Oller-Salvia B, Sanchez-Navarro M, Ciudad S, et al. MiniAp-4: A venom-inspired peptidomimetic for brain delivery. Angewandte Chemie 2016 ; 55 : 572–575. [CrossRef] [Google Scholar]
- Kuntz M, Candela P, Saint-Pol J, et al. Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-beta peptides in an In vitro model of the human blood-brain barrier. J Alzheimer Dis 2015 ; 48 : 849–862. [CrossRef] [Google Scholar]
- Drolez A, Vandenhaute E, Julien S, et al. Selection of a relevant In vitro blood-brain barrier model to investigate pro-metastatic features of human breast cancer cell lines. PLoS One 2016 ; 11 : e0151155. [CrossRef] [PubMed] [Google Scholar]
- Drappatz J, Brenner A, Wong ET, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res 2013 ; 19 : 1567–1576. [CrossRef] [PubMed] [Google Scholar]
- Cecchelli R, Dehouck B, Descamps L, et al. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 1999 ; 36 : 165–178. [CrossRef] [PubMed] [Google Scholar]
- Palmiotti CA, Prasad S, Naik P, et al. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res 2014 ; 31 : 3229–3250. [CrossRef] [PubMed] [Google Scholar]
- Booth R, Kim H. Characterization of a microfluidic In vitro model of the blood-brain barrier (muBBB). Lab Chip 2012 ; 12 : 1784–1792. [CrossRef] [PubMed] [Google Scholar]
- Gosselet F. Apolipoprotéine E et intégrité de la barrière hémato-encéphalique. Med Sci (Paris) 2012 ; 28 : 920–923. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Collin L. Ouvrir le cerveau à de nouvelles thérapies. Med Sci (Paris) 2014 ; 30 : 486–488. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pedroso DC, Tellechea A, Moura L, et al. Improved survival, vascular differentiation and wound healing potential of stem cells co-cultured with endothelial cells. PLoS One 2011 ; 6 : e16114. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.