Free Access
Issue
Med Sci (Paris)
Volume 33, Number 4, Avril 2017
Page(s) 404 - 409
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173304010
Published online 12 May 2017
  1. Lichtenstein P, Yip BH, Björk C, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009 ; 373 : 234–239. [CrossRef] [PubMed] [Google Scholar]
  2. Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 2014 ; 75 : 300–306. [CrossRef] [PubMed] [Google Scholar]
  3. Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res 2016 ; 176 : 36–40. [CrossRef] [PubMed] [Google Scholar]
  4. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001 ; 409 : 860–921. [CrossRef] [PubMed] [Google Scholar]
  5. Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genom Hum Genet 2006 ; 7 : 149–173. [CrossRef] [Google Scholar]
  6. Weiss RA. The discovery of endogenous retroviruses. Retrovirology 2006 ; 3 : 67. [CrossRef] [PubMed] [Google Scholar]
  7. Belshaw R, Katzourakis A, Paces J, et al. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 2005 ; 22 : 814–817. [CrossRef] [PubMed] [Google Scholar]
  8. Belshaw R, Pereira V, Katzourakis A, et al. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci USA 2004 ; 101 : 4894–4899. [CrossRef] [Google Scholar]
  9. de Parseval N, Heidmann T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res 2005 ; 110 : 318–332. [CrossRef] [PubMed] [Google Scholar]
  10. Marchi E, Kanapin A, Magiorkinis G, et al. Unfixed endogenous retroviral insertions in the human population. J Virol 2014 ; 88 : 9529–9537. [CrossRef] [PubMed] [Google Scholar]
  11. Buzdin A. Human-specific endogenous retroviruses. ScientificWorldJournal 2007 ; 7 : 1848–1868. [CrossRef] [PubMed] [Google Scholar]
  12. Kim HS. Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol Cells 2012 ; 33 : 539–544. [CrossRef] [PubMed] [Google Scholar]
  13. Voisset C, Bouton O, Bedin F, et al. Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retrovir 2000 ; 16 : 731–740. [CrossRef] [Google Scholar]
  14. Wildschutte JH, Williams ZH, Montesion M, et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci USA 2016 ; 113 : E2326–E2334. [CrossRef] [Google Scholar]
  15. Wildschutte JH, Ram D, Subramanian R, et al. The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. Retrovirology 2014 ; 11 : 62. [CrossRef] [PubMed] [Google Scholar]
  16. Marchi E, Kanapin A, Byott M, et al. Neanderthal and Denisovan retroviruses in modern humans. Curr Biol CB 2013 ; 23 : R994–R995. [CrossRef] [Google Scholar]
  17. Blond JL, Besème F, Duret L, et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 1999 ; 73 : 1175–1185. [PubMed] [Google Scholar]
  18. Wenner M. Virology: the battle within. Nature 2008 ; 451 : 388–389. [CrossRef] [PubMed] [Google Scholar]
  19. Crow TJ. Is schizophrenia an infectious disease? Lancet 1983 ; 1 : 173–175. [CrossRef] [PubMed] [Google Scholar]
  20. Deb-Rinker P, Klempan TA, O’Reilly RL, et al. Molecular characterization of a MSRV-like sequence identified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics 1999 ; 61 : 133–144. [CrossRef] [PubMed] [Google Scholar]
  21. Frank O, Giehl M, Zheng C, et al. Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J Virol 2005 ; 79 : 10890–10901. [CrossRef] [PubMed] [Google Scholar]
  22. Yolken RH, Karlsson H, Yee F, et al. Endogenous retroviruses and schizophrenia. Brain Res Brain Res Rev 2000 ; 31 : 193–199. [CrossRef] [PubMed] [Google Scholar]
  23. Weis S, Llenos IC, Sabunciyan S, et al. Reduced expression of human endogenous retrovirus (HERV)-W GAG protein in the cingulate gyrus and hippocampus in schizophrenia, bipolar disorder, and depression. J Neural Transm Vienna Austria 1996 2007 ; 114 : 645–655. [Google Scholar]
  24. Diem O, Schäffner M, Seifarth W, et al. Influence of antipsychotic drugs on human endogenous retrovirus (HERV) transcription in brain cells. PloS One 2012 ; 7 : e30054. [CrossRef] [PubMed] [Google Scholar]
  25. Karlsson H, Bachmann S, Schröder J, et al. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 2001 ; 98 : 4634–4639. [CrossRef] [Google Scholar]
  26. Karlsson H, Schröder J, Bachmann S, et al. HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 2004 ; 9 : 12–13. [CrossRef] [PubMed] [Google Scholar]
  27. Yao Y, Schröder J, Nellåker C, et al. Elevated levels of human endogenous retrovirus-W transcripts in blood cells from patients with first episode schizophrenia. Genes Brain Behav 2008 ; 7 : 103–112. [PubMed] [Google Scholar]
  28. Perron H, Hamdani N, Faucard R, et al. Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry 2012 ; 2 : e201. [CrossRef] [PubMed] [Google Scholar]
  29. Huang W, Li S, Hu Y, et al. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr Bull 2011 ; 37 : 988–1000. [CrossRef] [PubMed] [Google Scholar]
  30. Perron H, Mekaoui L, Bernard C, et al. Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol Psychiatry 2008 ; 64 : 1019–1023. [CrossRef] [PubMed] [Google Scholar]
  31. Perron H, Garson JA, Bedin F, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative research group on multiple sclerosis. Proc Natl Acad Sci USA 1997 ; 94 : 7583–7588. [CrossRef] [Google Scholar]
  32. Dickerson F, Lillehoj E, Stallings C, et al. Antibodies to retroviruses in recent onset psychosis and multi-episode schizophrenia. Schizophr Res 2012 ; 138 : 198–205. [CrossRef] [PubMed] [Google Scholar]
  33. Suntsova M, Gogvadze EV, Salozhin S, et al. Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc Natl Acad Sci USA 2013 ; 110 : 19472–19477. [CrossRef] [Google Scholar]
  34. Hegyi H. GABBR1 has a HERV-W LTR in its regulatory region – a possible implication for schizophrenia. Biol Direct 2013 ; 8 : 5. [CrossRef] [PubMed] [Google Scholar]
  35. Fatemi SH, Folsom TD, Thuras PD. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011 ; 128 : 37–43. [CrossRef] [PubMed] [Google Scholar]
  36. Mitchelmore C, Gede L. Brain Derived neurotrophic factor: epigenetic regulation in psychiatric disorders. Brain Res 2014 ; 1586 : 162–172. [CrossRef] [PubMed] [Google Scholar]
  37. Chang YH, Lee SY, Chen SL, et al. Genetic variants of the BDNF and DRD3 genes in bipolar disorder comorbid with anxiety disorder. J Affect Disord 2013 ; 151 : 967–972. [CrossRef] [PubMed] [Google Scholar]
  38. Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. BioEssays News Rev Mol Cell Dev Biol 2013 ; 35 : 794–803. [CrossRef] [Google Scholar]
  39. Kremer D, Schichel T, Förster M, et al. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 2013 ; 74 : 721–732. [CrossRef] [PubMed] [Google Scholar]
  40. Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015 ; 161 : 102–112. [CrossRef] [PubMed] [Google Scholar]
  41. Leboyer M, Tamouza R, Charron D, et al. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry 2013 ; 14 : 80–90. [CrossRef] [PubMed] [Google Scholar]
  42. Blomström A, Karlsson H, Wicks S, et al. Maternal antibodies to infectious agents and risk for non-affective psychoses in the offspring: a matched case-control study. Schizophr Res 2012 ; 140 : 25–30. [CrossRef] [PubMed] [Google Scholar]
  43. Sutterland AL, Fond G, Kuin A, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 2015 ; 132 : 161–179. [CrossRef] [PubMed] [Google Scholar]
  44. Frank O, Jones-Brando L, Leib-Mosch C, et al. Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis 2006 ; 194 : 1447–1449. [CrossRef] [PubMed] [Google Scholar]
  45. Grozeva D, Kirov G, Ivanov D, et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry 2010 ; 67 : 318–327. [CrossRef] [PubMed] [Google Scholar]
  46. Stefansson H, Rujescu D, Cichon S, et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008 ; 455 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  47. International schizophrenia consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008 ; 455 : 237–241. [CrossRef] [PubMed] [Google Scholar]
  48. Bassett AS, Marshall CR, Lionel AC, et al. Copy number variations and risk for schizophrenia in 22q11.2 deletion syndrome. Hum Mol Genet 2008 ; 17 : 4045–4053. [CrossRef] [PubMed] [Google Scholar]
  49. Petersen T, Møller-Larsen A, Ellermann-Eriksen S, et al. Effects of interferon-beta therapy on elements in the antiviral immune response towards the human herpesviruses EBV, HSV, and VZV, and to the human endogenous retroviruses HERV-H and HERV-W in multiple sclerosis. J Neuroimmunol 2012 ; 249 : 105–108. [CrossRef] [PubMed] [Google Scholar]
  50. Grüber L, Bunse T, Weidinger E, et al. Adjunctive recombinant human interferon gamma-1b for treatment-resistant schizophrenia in 2 patients. J Clin Psychiatry 2014 ; 75 : 1266–1267. [CrossRef] [Google Scholar]
  51. Derfuss T, Curtin F, Guebelin C, et al. A phase IIa randomized clinical study testing GNbAC1, a humanized monoclonal antibody against the envelope protein of multiple sclerosis associated endogenous retrovirus in multiple sclerosis patients: a twelve month follow-up. J Neuroimmunol 2015 ; 285 : 68–70. [CrossRef] [PubMed] [Google Scholar]
  52. Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. mAbs 2015 ; 7 : 265–275. [CrossRef] [PubMed] [Google Scholar]
  53. Kremer D, Förster M, Schichel T, et al. The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Mult Scler 2015 ; 21 : 1200–1203. [CrossRef] [Google Scholar]
  54. Medina J, Perron H. Séquences provenant d’éléments génétiques mobiles, face cachée du génome humain. Med Sci (Paris) 2017 ; 33 : 151–158. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Medina J, Charvet B, Horvat B, et al. Des séquences rétrovirales endogènes dans le génome humain peuvent jouer un rôle physiologique ou pathologique. Med Sci (Paris) 2017 ; 33 : 397–403. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.