Free Access
Med Sci (Paris)
Volume 33, Number 4, Avril 2017
Page(s) 410 - 416
Section M/S Revues
Published online 12 May 2017
  1. Arnaud I, Jarlier V, groupe de travail BMR-RAISIN. Surveillance des bactéries multirésistantes dans les établissements de santé en France. Réseau BMR-RAISIN, résultats 2013. Saint-Maurice : Institut de Veille Sanitaire (InVS), 2015. [Google Scholar]
  2. Colomb-Cotinat M, Lacoste J, Coignard B, et al. Morbidité et mortalité des infections à bactéries multi-résistantes aux antibiotiques en France en 2012. Étude Burden BMR. Saint-Maurice : Institut de Veille Sanitaire (InVS), 2015. [Google Scholar]
  3. Center for Disease Control. Antibiotic resistance threats in the United States. Atlanta : CDC, 2013. [Google Scholar]
  4. Carlet J. The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control 2012 ; 1 : 39. [CrossRef] [PubMed] [Google Scholar]
  5. Carlet J, Le Coz P. Rapport du groupe de travail spécial pour la préservation des antibiotiques. Paris : Ministère des Affaires sociales, de la Santé et des Droits des femmes, 2015. [Google Scholar]
  6. Nobrega FL, Costa AR, Kluskens LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol 2015 ; 23 : 185–191. [Google Scholar]
  7. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol 2004 ; 186 : 3677–3686. [CrossRef] [PubMed] [Google Scholar]
  8. Rohwer F. Global phage diversity. Cell 2003 ; 113 : 141. [CrossRef] [PubMed] [Google Scholar]
  9. Letarov A, Kulikov E. The bacteriophages in human- and animal body-associated microbial communities. J Appl Microbiol 2009 ; 107 : 1–13. [Google Scholar]
  10. Suttle CA. The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 1994 ; 28 : 237–243. [Google Scholar]
  11. Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 2014 ; 38 : 916–931. [CrossRef] [PubMed] [Google Scholar]
  12. d’Herelle F. Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 1917 ; 165 : 373–375. [Google Scholar]
  13. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 2011 ; 1 : 66–85. [CrossRef] [PubMed] [Google Scholar]
  14. Pires DP, Oliveira H, Melo LD, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 2016 ; 100 : 2141–2151. [CrossRef] [PubMed] [Google Scholar]
  15. Abedon ST. Phage therapy of pulmonary infections. Bacteriophage 2015 ; 5 : e1020260. [Google Scholar]
  16. Saussereau E, Debarbieux L. Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res 2012 ; 83 : 123–141. [Google Scholar]
  17. Dufour N, Debarbieux L, Fromentin M, Ricard JD. Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit Care Med 2015 ; 43 : e190–e198. [CrossRef] [PubMed] [Google Scholar]
  18. Debarbieux L, Leduc D, Maura D, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 2010 ; 201 : 1096–1104. [CrossRef] [PubMed] [Google Scholar]
  19. Dufour N, Henry M, Ricard JD, Debarbieux L. Commentary: morphologically distinct Escherichia coli bacteriophages differ in their efficacy and ability to stimulate cytokine release in vitro. Front Microbiol 2016 ; 7 : 1029. [CrossRef] [PubMed] [Google Scholar]
  20. Speck P, Smithyman A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett 2016 ; 363. [Google Scholar]
  21. Comeau AM, Tetart F, Trojet SN, et al. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2007 ; 2 : e799. [CrossRef] [PubMed] [Google Scholar]
  22. Samson JE, Magadan AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 2013 ; 11 : 675–687. [CrossRef] [PubMed] [Google Scholar]
  23. Dy RL, Richter C, Salmond GPC, Fineran PC. Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 2014 ; 1 : 307–331. [CrossRef] [PubMed] [Google Scholar]
  24. Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. Bioessays 2011 ; 33 : 43–51. [CrossRef] [PubMed] [Google Scholar]
  25. Capparelli R, Nocerino N, Iannaccone M, et al. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis 2010 ; 201 : 52–61. [CrossRef] [PubMed] [Google Scholar]
  26. Hung CH, Kuo CF, Wang CH, et al. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 2011 ; 55 : 1358–1365. [CrossRef] [PubMed] [Google Scholar]
  27. Pouillot F, Chomton M, Blois H, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother 2012 ; 56 : 3568–3575. [CrossRef] [PubMed] [Google Scholar]
  28. Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 2016 ; 6 : 26717. [CrossRef] [PubMed] [Google Scholar]
  29. Bruttin A, Brussow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 2005 ; 49 : 2874–2878. [CrossRef] [PubMed] [Google Scholar]
  30. McCallin S, Alam Sarker S, Barretto C, et al. Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 2013 ; 443 : 187–196. [CrossRef] [PubMed] [Google Scholar]
  31. Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, et al. Clinical aspects of phage therapy. Adv Virus Res 2012 ; 83 : 73–121. [Google Scholar]
  32. Miernikiewicz P, Dabrowska K, Piotrowicz A, et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One 2013 ; 8 : e71036. [CrossRef] [PubMed] [Google Scholar]
  33. Dabrowska K, Miernikiewicz P, Piotrowicz A, et al. Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 2014 ; 88 : 12551–12557. [CrossRef] [PubMed] [Google Scholar]
  34. Ochs HD, Buckley RH, Kobayashi RH, et al. Antibody responses to bacteriophage phi X174 in patients with adenosine deaminase deficiency. Blood 1992 ; 80 : 1163–1171. [Google Scholar]
  35. Zaczek M, Lusiak-Szelachowska M, Jonczyk-Matysiak E, et al. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front Microbiol 2016 ; 7 : 1681. [CrossRef] [PubMed] [Google Scholar]
  36. Ando H, Lemire S, Pires DP, Lu TK. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems 2015 ; 1 : 187–196. [CrossRef] [PubMed] [Google Scholar]
  37. Barbu EM, Cady KC, Hubby B. Phage therapy in the era of synthetic biology. Cold Spring Harb Perspect Biol 2016 ; 8. [PubMed] [Google Scholar]
  38. Wright A, Hawkins CH, Anggard EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa: a preliminary report of efficacy. Clin Otolaryngol 2009 ; 34 : 349–357. [CrossRef] [PubMed] [Google Scholar]
  39. Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 2016 ; 4 : 124–137. [CrossRef] [PubMed] [Google Scholar]
  40. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014 ; 27 : 543–574. [CrossRef] [PubMed] [Google Scholar]
  41. Dufour N, Clermont O, La Combe B, et al. Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J Antimicrob Chemother 2016 ; 71 : 3072–3080. [CrossRef] [PubMed] [Google Scholar]
  42. Galtier M, De Sordi L, Maura D, et al. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ Microbiol 2016 ; 18 : 2237–2245. [CrossRef] [PubMed] [Google Scholar]
  43. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014 ; 5 : 213–227. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.