Free Access
Med Sci (Paris)
Volume 33, Number 4, Avril 2017
Page(s) 397 - 403
Section M/S Revues
Published online 12 May 2017
  1. Leboyer M, Tamouza R, Charron D, et al. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry 2013 ; 14 : 80–90. [CrossRef] [PubMed] [Google Scholar]
  2. Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 2010 ; 39 : 51–61. [CrossRef] [PubMed] [Google Scholar]
  3. Engel ME, Hiebert SW. The enemy within: dormant retroviruses awaken. Nat Med 2010 ; 16 : 517–518. [CrossRef] [PubMed] [Google Scholar]
  4. Reynaud J, M P Horvat B, et al. Human Herpesvirus 6 and neuroinflammation. ISRN Virology 2013 ; 2013 : e834890. [CrossRef] [Google Scholar]
  5. Mameli G, Poddighe L, Mei A, et al. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 2012 ; 7 : e44991. [CrossRef] [PubMed] [Google Scholar]
  6. Sutkowski N, Conrad B, Thorley-Lawson DA, et al. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001 ; 15 : 579–589. [CrossRef] [PubMed] [Google Scholar]
  7. Bergallo M, Galliano I, Montanari P, et al. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol 2015 ; 68 : 28–31. [CrossRef] [PubMed] [Google Scholar]
  8. Lavie L, Kitova M, Maldener E, et al. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2005 ; 79 : 876–883. [CrossRef] [PubMed] [Google Scholar]
  9. Esteki-Zadeh A, Karimi M, Strååt K, et al. Human cytomegalovirus infection is sensitive to the host cell DNA methylation state and alters global DNA methylation capacity. Epigenetics 2012 ; 7 : 585–593. [CrossRef] [PubMed] [Google Scholar]
  10. Niller HH, Tarnai Z, Decsi G, et al. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol 2014 ; 9 : 747–756. [CrossRef] [PubMed] [Google Scholar]
  11. Palù G, Benetti L, Calistri A. Molecular basis of the interactions between herpes simplex viruses and HIV-1. Herpes J IHMF 2001 ; 8 : 50–55. [Google Scholar]
  12. Kwun HJ, Han HJ, Lee WJ, et al. Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 2002 ; 86 : 93–100. [CrossRef] [PubMed] [Google Scholar]
  13. Lee WJ, Kwun HJ, Kim HS, et al. Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cell 2003 ; 15 : 75–80. [Google Scholar]
  14. Perron H, Suh M, Lalande B, et al. Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 1993 ; 74 : 65–72. [CrossRef] [PubMed] [Google Scholar]
  15. Isfort R, Jones D, Kost R, et al. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Natl Acad Sci USA 1992 ; 89 : 991–995. [CrossRef] [Google Scholar]
  16. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 1998 ; 9 : 405–411. [CrossRef] [PubMed] [Google Scholar]
  17. Sutkowski N, Chen G, Calderon G, et al. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 2004 ; 78 : 7852–7860. [CrossRef] [PubMed] [Google Scholar]
  18. Turcanova VL, Bundgaard B, Höllsberg P. Human herpesvirus-6B induces expression of the human endogenous retrovirus K18-encoded superantigen. J Clin Virol 2009 ; 46 : 15–19. [CrossRef] [PubMed] [Google Scholar]
  19. Marie JC, Astier AL, Rivailler P, et al. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 2002 ; 3 : 659–666. [PubMed] [Google Scholar]
  20. Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000 ; 403 : 785–789. [CrossRef] [PubMed] [Google Scholar]
  21. Lee X, Keith JC, Stumm N, et al. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 2001 ; 22 : 808–812. [CrossRef] [PubMed] [Google Scholar]
  22. Sugimoto J, Sugimoto M, Bernstein H, et al. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 2013 ; 3 : 1462. [CrossRef] [PubMed] [Google Scholar]
  23. Yan Y, Buckler-White A, Wollenberg K, et al. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc Natl Acad Sci USA 2009 ; 106 : 3259–3263. [CrossRef] [Google Scholar]
  24. Varela M, Spencer TE, Palmarini M, et al. Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann NY Acad Sci 2009 ; 1178 : 15772. [CrossRef] [Google Scholar]
  25. Chang A, Tourtellotte WW, Rudick R, et al. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002 ; 346 : 16573. [Google Scholar]
  26. Koprowski H, DeFreitas EC, Harper ME, et al. Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature 1985 ; 318 : 154–160. [CrossRef] [PubMed] [Google Scholar]
  27. Blond JL, Besème F, Duret L, et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 1999 ; 73 : 1175–1185. [PubMed] [Google Scholar]
  28. Perron H, Jouvin-Marche E, Michel M, et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 2001 ; 287 : 321–332. [CrossRef] [PubMed] [Google Scholar]
  29. Rolland A, Jouvin-Marche E, Viret C, et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 2006 ; 176 : 7636–7644. [CrossRef] [PubMed] [Google Scholar]
  30. Perron H, Dougier-Reynaud H-L, Lomparski C, et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 2013 ; 8 : e80128. [CrossRef] [PubMed] [Google Scholar]
  31. Duperray A, Barbe D, Raguenez G, et al. Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol 2015 ; 27 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  32. Ménard A, Amouri R, Michel M, et al. Gliotoxicity, reverse transcriptase activity and retroviral RNA in monocyte/macrophage culture supernatants from patients with multiple sclerosis. FEBS Lett 1997 ; 413 : 477–485. [CrossRef] [PubMed] [Google Scholar]
  33. Kremer D, Schichel T, Förster M, et al. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 2013 ; 74 : 721–732. [CrossRef] [PubMed] [Google Scholar]
  34. van Horssen J, van der Pol S, Nijland P, et al. Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis. Mult Scler Relat Disord 2016 ; 8 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  35. Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. mAbs 2015 ; 7 : 265–275. [CrossRef] [PubMed] [Google Scholar]
  36. Kremer D, Förster M, Schichel T, et al. The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Mult Scler Houndmills Basingstoke Engl 2015 ; 21 : 1200–1203. [CrossRef] [PubMed] [Google Scholar]
  37. Zimmermann M, Sanderson NSR, Rasenack M, et al. Immunologic monitoring during a phase 2a trial of the GNbAC1 antibody in patients with MS. Neuro Neuroimmunol Neuroinflammation 2015 ; 2 : e144. [CrossRef] [Google Scholar]
  38. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011 ; 7 : 639–649. [CrossRef] [PubMed] [Google Scholar]
  39. Polymenidou M, Cleveland DW. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 2011 ; 147 : 498–508. [CrossRef] [PubMed] [Google Scholar]
  40. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006 ; 314 : 130–133. [CrossRef] [PubMed] [Google Scholar]
  41. Turner MR, Hardiman O, Benatar M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 2013 ; 12 : 310–322. [CrossRef] [PubMed] [Google Scholar]
  42. Viola MV, Frazier M, White L, et al. RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients. J Exp Med 1975 ; 142 : 483–494. [CrossRef] [PubMed] [Google Scholar]
  43. McCormick AL, Brown RH, Cudkowicz ME, et al. Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology 2008 ; 70 : 278–283. [CrossRef] [PubMed] [Google Scholar]
  44. Douville R, Liu J, Rothstein J, et al. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 2011 ; 69 : 141–151. [CrossRef] [PubMed] [Google Scholar]
  45. Li W, Lee MH, Henderson L, et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 2015 ; 7 : 307ra153. [CrossRef] [PubMed] [Google Scholar]
  46. Saldi TK, Ash PE, Wilson G, et al. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. EMBO J 2014 ; 33 : 2947–2966. [CrossRef] [PubMed] [Google Scholar]
  47. Manghera M, Ferguson-Parry J, Douville RN. TDP-43 regulates endogenous retrovirus-K viral protein accumulation. Neurobiol Dis 2016 ; 94 : 226–236. [CrossRef] [PubMed] [Google Scholar]
  48. Medina J, Perron H. Séquences provenant d’éléments génétiques mobiles, face cachée du génome humain. Med Sci (Paris) 2017 ; 33 : 151–158. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Ellul P, Groc L, Leboyer M. Les rétrovirus endogènes humains, une implication dans la schizophrénie et le trouble bipolaire. Med Sci (Paris) 2017 ; 33 : 404–409. [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.