Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 4, Avril 2017
Page(s) 397 - 403
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173304009
Publié en ligne 12 mai 2017
  1. Leboyer M, Tamouza R, Charron D, et al. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry 2013 ; 14 : 80–90. [CrossRef] [PubMed] [Google Scholar]
  2. Perron H, Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 2010 ; 39 : 51–61. [CrossRef] [PubMed] [Google Scholar]
  3. Engel ME, Hiebert SW. The enemy within: dormant retroviruses awaken. Nat Med 2010 ; 16 : 517–518. [CrossRef] [PubMed] [Google Scholar]
  4. Reynaud J, M P Horvat B, et al. Human Herpesvirus 6 and neuroinflammation. ISRN Virology 2013 ; 2013 : e834890. [CrossRef] [Google Scholar]
  5. Mameli G, Poddighe L, Mei A, et al. Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 2012 ; 7 : e44991. [CrossRef] [PubMed] [Google Scholar]
  6. Sutkowski N, Conrad B, Thorley-Lawson DA, et al. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 2001 ; 15 : 579–589. [CrossRef] [PubMed] [Google Scholar]
  7. Bergallo M, Galliano I, Montanari P, et al. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J Clin Virol 2015 ; 68 : 28–31. [CrossRef] [PubMed] [Google Scholar]
  8. Lavie L, Kitova M, Maldener E, et al. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2005 ; 79 : 876–883. [CrossRef] [PubMed] [Google Scholar]
  9. Esteki-Zadeh A, Karimi M, Strååt K, et al. Human cytomegalovirus infection is sensitive to the host cell DNA methylation state and alters global DNA methylation capacity. Epigenetics 2012 ; 7 : 585–593. [CrossRef] [PubMed] [Google Scholar]
  10. Niller HH, Tarnai Z, Decsi G, et al. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol 2014 ; 9 : 747–756. [CrossRef] [PubMed] [Google Scholar]
  11. Palù G, Benetti L, Calistri A. Molecular basis of the interactions between herpes simplex viruses and HIV-1. Herpes J IHMF 2001 ; 8 : 50–55. [Google Scholar]
  12. Kwun HJ, Han HJ, Lee WJ, et al. Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 2002 ; 86 : 93–100. [CrossRef] [PubMed] [Google Scholar]
  13. Lee WJ, Kwun HJ, Kim HS, et al. Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cell 2003 ; 15 : 75–80. [Google Scholar]
  14. Perron H, Suh M, Lalande B, et al. Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 1993 ; 74 : 65–72. [CrossRef] [PubMed] [Google Scholar]
  15. Isfort R, Jones D, Kost R, et al. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc Natl Acad Sci USA 1992 ; 89 : 991–995. [CrossRef] [Google Scholar]
  16. Caldwell RG, Wilson JB, Anderson SJ, et al. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 1998 ; 9 : 405–411. [CrossRef] [PubMed] [Google Scholar]
  17. Sutkowski N, Chen G, Calderon G, et al. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 2004 ; 78 : 7852–7860. [CrossRef] [PubMed] [Google Scholar]
  18. Turcanova VL, Bundgaard B, Höllsberg P. Human herpesvirus-6B induces expression of the human endogenous retrovirus K18-encoded superantigen. J Clin Virol 2009 ; 46 : 15–19. [CrossRef] [PubMed] [Google Scholar]
  19. Marie JC, Astier AL, Rivailler P, et al. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 2002 ; 3 : 659–666. [PubMed] [Google Scholar]
  20. Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000 ; 403 : 785–789. [CrossRef] [PubMed] [Google Scholar]
  21. Lee X, Keith JC, Stumm N, et al. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 2001 ; 22 : 808–812. [CrossRef] [PubMed] [Google Scholar]
  22. Sugimoto J, Sugimoto M, Bernstein H, et al. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 2013 ; 3 : 1462. [CrossRef] [PubMed] [Google Scholar]
  23. Yan Y, Buckler-White A, Wollenberg K, et al. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc Natl Acad Sci USA 2009 ; 106 : 3259–3263. [CrossRef] [Google Scholar]
  24. Varela M, Spencer TE, Palmarini M, et al. Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann NY Acad Sci 2009 ; 1178 : 15772. [CrossRef] [Google Scholar]
  25. Chang A, Tourtellotte WW, Rudick R, et al. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002 ; 346 : 16573. [Google Scholar]
  26. Koprowski H, DeFreitas EC, Harper ME, et al. Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature 1985 ; 318 : 154–160. [CrossRef] [PubMed] [Google Scholar]
  27. Blond JL, Besème F, Duret L, et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 1999 ; 73 : 1175–1185. [PubMed] [Google Scholar]
  28. Perron H, Jouvin-Marche E, Michel M, et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 2001 ; 287 : 321–332. [CrossRef] [PubMed] [Google Scholar]
  29. Rolland A, Jouvin-Marche E, Viret C, et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 2006 ; 176 : 7636–7644. [CrossRef] [PubMed] [Google Scholar]
  30. Perron H, Dougier-Reynaud H-L, Lomparski C, et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 2013 ; 8 : e80128. [CrossRef] [PubMed] [Google Scholar]
  31. Duperray A, Barbe D, Raguenez G, et al. Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int Immunol 2015 ; 27 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  32. Ménard A, Amouri R, Michel M, et al. Gliotoxicity, reverse transcriptase activity and retroviral RNA in monocyte/macrophage culture supernatants from patients with multiple sclerosis. FEBS Lett 1997 ; 413 : 477–485. [CrossRef] [PubMed] [Google Scholar]
  33. Kremer D, Schichel T, Förster M, et al. Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 2013 ; 74 : 721–732. [CrossRef] [PubMed] [Google Scholar]
  34. van Horssen J, van der Pol S, Nijland P, et al. Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis. Mult Scler Relat Disord 2016 ; 8 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  35. Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. mAbs 2015 ; 7 : 265–275. [CrossRef] [PubMed] [Google Scholar]
  36. Kremer D, Förster M, Schichel T, et al. The neutralizing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligodendroglial maturation blockade. Mult Scler Houndmills Basingstoke Engl 2015 ; 21 : 1200–1203. [CrossRef] [PubMed] [Google Scholar]
  37. Zimmermann M, Sanderson NSR, Rasenack M, et al. Immunologic monitoring during a phase 2a trial of the GNbAC1 antibody in patients with MS. Neuro Neuroimmunol Neuroinflammation 2015 ; 2 : e144. [CrossRef] [Google Scholar]
  38. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 2011 ; 7 : 639–649. [CrossRef] [PubMed] [Google Scholar]
  39. Polymenidou M, Cleveland DW. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 2011 ; 147 : 498–508. [CrossRef] [PubMed] [Google Scholar]
  40. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006 ; 314 : 130–133. [CrossRef] [PubMed] [Google Scholar]
  41. Turner MR, Hardiman O, Benatar M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 2013 ; 12 : 310–322. [CrossRef] [PubMed] [Google Scholar]
  42. Viola MV, Frazier M, White L, et al. RNA-instructed DNA polymerase activity in a cytoplasmic particulate fraction in brains from Guamanian patients. J Exp Med 1975 ; 142 : 483–494. [CrossRef] [PubMed] [Google Scholar]
  43. McCormick AL, Brown RH, Cudkowicz ME, et al. Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology 2008 ; 70 : 278–283. [CrossRef] [PubMed] [Google Scholar]
  44. Douville R, Liu J, Rothstein J, et al. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 2011 ; 69 : 141–151. [CrossRef] [PubMed] [Google Scholar]
  45. Li W, Lee MH, Henderson L, et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 2015 ; 7 : 307ra153. [CrossRef] [PubMed] [Google Scholar]
  46. Saldi TK, Ash PE, Wilson G, et al. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. EMBO J 2014 ; 33 : 2947–2966. [CrossRef] [PubMed] [Google Scholar]
  47. Manghera M, Ferguson-Parry J, Douville RN. TDP-43 regulates endogenous retrovirus-K viral protein accumulation. Neurobiol Dis 2016 ; 94 : 226–236. [CrossRef] [PubMed] [Google Scholar]
  48. Medina J, Perron H. Séquences provenant d’éléments génétiques mobiles, face cachée du génome humain. Med Sci (Paris) 2017 ; 33 : 151–158. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Ellul P, Groc L, Leboyer M. Les rétrovirus endogènes humains, une implication dans la schizophrénie et le trouble bipolaire. Med Sci (Paris) 2017 ; 33 : 404–409. [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.