Free Access
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Page(s) 297 - 304
Section M/S Revues
Published online 03 April 2017
  1. Boya P, Esteban-Martinez L, Serrano-Puebla A, et al. Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res 2016 ; 55 : 206–245. [CrossRef] [PubMed] [Google Scholar]
  2. Ichimura Y, Komatsu M. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Exp Anim 2011 ; 60 : 329–345. [CrossRef] [PubMed] [Google Scholar]
  3. Mariño G, Fernández AF, Cabrera S, et al. Autophagy is essential for mouse sense of balance. J Clin Invest 2010 ; 120 : 2331–2344. [CrossRef] [PubMed] [Google Scholar]
  4. Rodriguez-Muela N, Germain F, Marino G, et al. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2012 ; 19 : 162–169. [CrossRef] [PubMed] [Google Scholar]
  5. Rodriguez-Muela N, Boya P. Axonal damage, autophagy and neuronal survival. Autophagy 2012 ; 8 : 286–288. [CrossRef] [PubMed] [Google Scholar]
  6. Chen Y, Sawada O, Kohno H, et al. Autophagy protects the retina from light-induced degeneration. J Biol Chem 2013 ; 288 : 7506–7518. [CrossRef] [PubMed] [Google Scholar]
  7. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006 ; 441 : 885–889. [CrossRef] [PubMed] [Google Scholar]
  8. Rodriguez-Muela N, Koga H, Garcia-Ledo L, et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013 ; 12 : 478–488. [CrossRef] [PubMed] [Google Scholar]
  9. Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell 2013 ; 154 : 365–376. [CrossRef] [PubMed] [Google Scholar]
  10. Perusek L, Sahu B, Parmar T, et al. Di-retinoid-pyridinium-ethanolamine (A2E) accumulation and the maintenance of the visual cycle are independent of Atg7-mediated autophagy in the retinal pigmented epithelium. J Biol Chem 2015 ; 290 : 29035–29044. [CrossRef] [PubMed] [Google Scholar]
  11. Gan B, Melkoumian ZK, Wu X, et al. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control. J Cell Biol 2005 ; 170 : 379–389. [CrossRef] [PubMed] [Google Scholar]
  12. Yao J, Jia L, Khan N, et al. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy 2015 ; 11 : 939–953. [CrossRef] [PubMed] [Google Scholar]
  13. Zhou Z, Doggett TA, Sene A, et al. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. Cell Death Differ 2015 ; 22 : 488–498. [CrossRef] [PubMed] [Google Scholar]
  14. Zhou Z, Vinberg F, Schottler F, et al. Autophagy supports color vision. Autophagy 2015 ; 11 : 1821–1832. [CrossRef] [PubMed] [Google Scholar]
  15. Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003 ; 22 : 483–543. [CrossRef] [PubMed] [Google Scholar]
  16. Kurz T, Karlsson M, Brunk UT, et al. ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 2009 ; 5 : 494–501. [CrossRef] [PubMed] [Google Scholar]
  17. Bergmann M, Schutt F, Holz FG, Kopitz J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. Faseb J 2004 ; 18 : 562–564. [CrossRef] [PubMed] [Google Scholar]
  18. Krohne TU, Stratmann NK, Kopitz J, Holz FG. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 2010 ; 90 : 465–471. [CrossRef] [PubMed] [Google Scholar]
  19. Qu J, Wang D, Grosskreutz CL. Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 2010 ; 91 : 48–53. [CrossRef] [PubMed] [Google Scholar]
  20. Kim SH, Munemasa Y, Kwong JM, et al. Activation of autophagy in retinal ganglion cells. J Neurosci Res 2008 ; 86 : 2943–2951. [CrossRef] [PubMed] [Google Scholar]
  21. Su W, Li Z, Jia Y, Zhuo Y. Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS One 2014 ; 9 : e99719. [CrossRef] [PubMed] [Google Scholar]
  22. Chalasani ML, Kumari A, Radha V, Swarup G. E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy. PLoS One 2014 ; 9 : e95758. [CrossRef] [PubMed] [Google Scholar]
  23. Ying H, Turturro S, Nguyen T, et al. Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015 ; 16 : 14. [CrossRef] [PubMed] [Google Scholar]
  24. Ribas VT, Koch JC, Michel U, et al. Attenuation of axonal degeneration by calcium channel inhibitors improves retinal ganglion cell survival and regeneration after optic nerve crush. Mol Neurobiol 2017 ; 54 : 72–86. [CrossRef] [PubMed] [Google Scholar]
  25. Knoferle J, Koch JC, Ostendorf T, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci USA 2010 ; 107 : 6064–6069. [CrossRef] [Google Scholar]
  26. Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 2012 ; 3 : e290. [CrossRef] [PubMed] [Google Scholar]
  27. Lev S. Molecular aspects of retinal degenerative diseases. Cell Mol Neurobiol 2001 ; 21 : 575–589. [CrossRef] [PubMed] [Google Scholar]
  28. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 2006 ; 83 : 380–389. [CrossRef] [PubMed] [Google Scholar]
  29. Kunchithapautham K, Rohrer B. Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy 2007 ; 3 : 65–66. [CrossRef] [PubMed] [Google Scholar]
  30. Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 2009 ; 12 : 44–52. [CrossRef] [PubMed] [Google Scholar]
  31. Athanasiou D, Aguila M, Bevilacqua D, et al. The cell stress machinery and retinal degeneration. FEBS Lett 2013 ; 587 : 2008–2017. [CrossRef] [PubMed] [Google Scholar]
  32. Kroeger H, LaVail MM, Lin JH. Endoplasmic reticulum stress in vertebrate mutant rhodopsin models of retinal degeneration. Adv Exp Med Biol 2014 ; 801 : 585–592. [CrossRef] [PubMed] [Google Scholar]
  33. Sizova OS, Shinde VM, Lenox AR, Gorbatyuk MS. Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors. Cell Signal 2014 ; 26 : 665–672. [CrossRef] [PubMed] [Google Scholar]
  34. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 2007 ; 500 : 222–238. [CrossRef] [PubMed] [Google Scholar]
  35. Barhoum R, Martinez-Navarrete G, Corrochano S, et al. Functional and structural modifications during retinal degeneration in the rd10 mouse. Neuroscience 2008 ; 155 : 698–713. [CrossRef] [PubMed] [Google Scholar]
  36. Corrochano S, Barhoum R, Boya P, et al. Attenuation of vision loss and delay in apoptosis of photoreceptors induced by proinsulin in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2008 ; 49 : 4188–4194. [CrossRef] [PubMed] [Google Scholar]
  37. Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, et al. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2015 ; 22 : 476–487. [CrossRef] [PubMed] [Google Scholar]
  38. Yamashima T. Reconsider Alzheimer’s disease by the ‘calpain-cathepsin hypothesis’: a perspective review. Prog Neurobiol 2013 ; 105 : 1–23. [CrossRef] [PubMed] [Google Scholar]
  39. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann NY Acad Sci 2016 ; 1371 : 30–44. [CrossRef] [Google Scholar]
  40. Militante J, Lombardini JB. Age-related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress. Neurochem Res 2004 ; 29 : 151–160. [CrossRef] [PubMed] [Google Scholar]
  41. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011 ; 146 : 682–695. [CrossRef] [PubMed] [Google Scholar]
  42. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest 2015 ; 125 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  43. Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging. Adv Exp Med Biol 2015 ; 847 : 73–87. [CrossRef] [PubMed] [Google Scholar]
  44. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000 ; 275 : 31505–31513. [CrossRef] [PubMed] [Google Scholar]
  45. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 2008 ; 14 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  46. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 2015 ; 125 : 25–32. [CrossRef] [PubMed] [Google Scholar]
  47. La Morel E. formation de l’autophagosome : un nouveau défi pour le biologiste cellulaire. Med Sci (Paris) 2017 ; 33 : 217–220. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.