Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 3, Mars 2017
Autophagie
Page(s) 297 - 304
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303017
Publié en ligne 3 avril 2017
  1. Boya P, Esteban-Martinez L, Serrano-Puebla A, et al. Autophagy in the eye: development, degeneration, and aging. Prog Retin Eye Res 2016 ; 55 : 206–245. [CrossRef] [PubMed] [Google Scholar]
  2. Ichimura Y, Komatsu M. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Exp Anim 2011 ; 60 : 329–345. [CrossRef] [PubMed] [Google Scholar]
  3. Mariño G, Fernández AF, Cabrera S, et al. Autophagy is essential for mouse sense of balance. J Clin Invest 2010 ; 120 : 2331–2344. [CrossRef] [PubMed] [Google Scholar]
  4. Rodriguez-Muela N, Germain F, Marino G, et al. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2012 ; 19 : 162–169. [CrossRef] [PubMed] [Google Scholar]
  5. Rodriguez-Muela N, Boya P. Axonal damage, autophagy and neuronal survival. Autophagy 2012 ; 8 : 286–288. [CrossRef] [PubMed] [Google Scholar]
  6. Chen Y, Sawada O, Kohno H, et al. Autophagy protects the retina from light-induced degeneration. J Biol Chem 2013 ; 288 : 7506–7518. [CrossRef] [PubMed] [Google Scholar]
  7. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006 ; 441 : 885–889. [CrossRef] [PubMed] [Google Scholar]
  8. Rodriguez-Muela N, Koga H, Garcia-Ledo L, et al. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 2013 ; 12 : 478–488. [CrossRef] [PubMed] [Google Scholar]
  9. Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell 2013 ; 154 : 365–376. [CrossRef] [PubMed] [Google Scholar]
  10. Perusek L, Sahu B, Parmar T, et al. Di-retinoid-pyridinium-ethanolamine (A2E) accumulation and the maintenance of the visual cycle are independent of Atg7-mediated autophagy in the retinal pigmented epithelium. J Biol Chem 2015 ; 290 : 29035–29044. [CrossRef] [PubMed] [Google Scholar]
  11. Gan B, Melkoumian ZK, Wu X, et al. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control. J Cell Biol 2005 ; 170 : 379–389. [CrossRef] [PubMed] [Google Scholar]
  12. Yao J, Jia L, Khan N, et al. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy 2015 ; 11 : 939–953. [CrossRef] [PubMed] [Google Scholar]
  13. Zhou Z, Doggett TA, Sene A, et al. Autophagy supports survival and phototransduction protein levels in rod photoreceptors. Cell Death Differ 2015 ; 22 : 488–498. [CrossRef] [PubMed] [Google Scholar]
  14. Zhou Z, Vinberg F, Schottler F, et al. Autophagy supports color vision. Autophagy 2015 ; 11 : 1821–1832. [CrossRef] [PubMed] [Google Scholar]
  15. Isenmann S, Kretz A, Cellerino A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 2003 ; 22 : 483–543. [CrossRef] [PubMed] [Google Scholar]
  16. Kurz T, Karlsson M, Brunk UT, et al. ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 2009 ; 5 : 494–501. [CrossRef] [PubMed] [Google Scholar]
  17. Bergmann M, Schutt F, Holz FG, Kopitz J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. Faseb J 2004 ; 18 : 562–564. [CrossRef] [PubMed] [Google Scholar]
  18. Krohne TU, Stratmann NK, Kopitz J, Holz FG. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 2010 ; 90 : 465–471. [CrossRef] [PubMed] [Google Scholar]
  19. Qu J, Wang D, Grosskreutz CL. Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 2010 ; 91 : 48–53. [CrossRef] [PubMed] [Google Scholar]
  20. Kim SH, Munemasa Y, Kwong JM, et al. Activation of autophagy in retinal ganglion cells. J Neurosci Res 2008 ; 86 : 2943–2951. [CrossRef] [PubMed] [Google Scholar]
  21. Su W, Li Z, Jia Y, Zhuo Y. Rapamycin is neuroprotective in a rat chronic hypertensive glaucoma model. PLoS One 2014 ; 9 : e99719. [CrossRef] [PubMed] [Google Scholar]
  22. Chalasani ML, Kumari A, Radha V, Swarup G. E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy. PLoS One 2014 ; 9 : e95758. [CrossRef] [PubMed] [Google Scholar]
  23. Ying H, Turturro S, Nguyen T, et al. Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015 ; 16 : 14. [CrossRef] [PubMed] [Google Scholar]
  24. Ribas VT, Koch JC, Michel U, et al. Attenuation of axonal degeneration by calcium channel inhibitors improves retinal ganglion cell survival and regeneration after optic nerve crush. Mol Neurobiol 2017 ; 54 : 72–86. [CrossRef] [PubMed] [Google Scholar]
  25. Knoferle J, Koch JC, Ostendorf T, et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci USA 2010 ; 107 : 6064–6069. [CrossRef] [Google Scholar]
  26. Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 2012 ; 3 : e290. [CrossRef] [PubMed] [Google Scholar]
  27. Lev S. Molecular aspects of retinal degenerative diseases. Cell Mol Neurobiol 2001 ; 21 : 575–589. [CrossRef] [PubMed] [Google Scholar]
  28. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res 2006 ; 83 : 380–389. [CrossRef] [PubMed] [Google Scholar]
  29. Kunchithapautham K, Rohrer B. Autophagy is one of the multiple mechanisms active in photoreceptor degeneration. Autophagy 2007 ; 3 : 65–66. [CrossRef] [PubMed] [Google Scholar]
  30. Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 2009 ; 12 : 44–52. [CrossRef] [PubMed] [Google Scholar]
  31. Athanasiou D, Aguila M, Bevilacqua D, et al. The cell stress machinery and retinal degeneration. FEBS Lett 2013 ; 587 : 2008–2017. [CrossRef] [PubMed] [Google Scholar]
  32. Kroeger H, LaVail MM, Lin JH. Endoplasmic reticulum stress in vertebrate mutant rhodopsin models of retinal degeneration. Adv Exp Med Biol 2014 ; 801 : 585–592. [CrossRef] [PubMed] [Google Scholar]
  33. Sizova OS, Shinde VM, Lenox AR, Gorbatyuk MS. Modulation of cellular signaling pathways in P23H rhodopsin photoreceptors. Cell Signal 2014 ; 26 : 665–672. [CrossRef] [PubMed] [Google Scholar]
  34. Gargini C, Terzibasi E, Mazzoni F, Strettoi E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 2007 ; 500 : 222–238. [CrossRef] [PubMed] [Google Scholar]
  35. Barhoum R, Martinez-Navarrete G, Corrochano S, et al. Functional and structural modifications during retinal degeneration in the rd10 mouse. Neuroscience 2008 ; 155 : 698–713. [CrossRef] [PubMed] [Google Scholar]
  36. Corrochano S, Barhoum R, Boya P, et al. Attenuation of vision loss and delay in apoptosis of photoreceptors induced by proinsulin in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2008 ; 49 : 4188–4194. [CrossRef] [PubMed] [Google Scholar]
  37. Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, et al. Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa. Cell Death Differ 2015 ; 22 : 476–487. [CrossRef] [PubMed] [Google Scholar]
  38. Yamashima T. Reconsider Alzheimer’s disease by the ‘calpain-cathepsin hypothesis’: a perspective review. Prog Neurobiol 2013 ; 105 : 1–23. [CrossRef] [PubMed] [Google Scholar]
  39. Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann NY Acad Sci 2016 ; 1371 : 30–44. [CrossRef] [Google Scholar]
  40. Militante J, Lombardini JB. Age-related retinal degeneration in animal models of aging: possible involvement of taurine deficiency and oxidative stress. Neurochem Res 2004 ; 29 : 151–160. [CrossRef] [PubMed] [Google Scholar]
  41. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011 ; 146 : 682–695. [CrossRef] [PubMed] [Google Scholar]
  42. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human disease. J Clin Invest 2015 ; 125 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  43. Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging. Adv Exp Med Biol 2015 ; 847 : 73–87. [CrossRef] [PubMed] [Google Scholar]
  44. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000 ; 275 : 31505–31513. [CrossRef] [PubMed] [Google Scholar]
  45. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 2008 ; 14 : 959–965. [CrossRef] [PubMed] [Google Scholar]
  46. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 2015 ; 125 : 25–32. [CrossRef] [PubMed] [Google Scholar]
  47. La Morel E. formation de l’autophagosome : un nouveau défi pour le biologiste cellulaire. Med Sci (Paris) 2017 ; 33 : 217–220. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.