Free Access
Issue
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Autophagie
Page(s) 305 - 311
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303018
Published online 03 April 2017
  1. Joubert PE, Pombo Gregoire I, et al. Autophagie et pathogènes : « Bon appétit Messieurs ! ». Med Sci (Paris) 2011 ; 27 : 41–47. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Verlhac P, Gregoire IP, Azocar O, et al. Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation. Cell Host Microbe 2015 ; 17 : 515–525. [CrossRef] [PubMed] [Google Scholar]
  3. Sorbara MT, Girardin SE. Emerging themes in bacterial autophagy. Curr Opin Microbiol 2015 ; 23 : 163–170. [CrossRef] [PubMed] [Google Scholar]
  4. Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010 ; 11 : 55–62. [CrossRef] [PubMed] [Google Scholar]
  5. Thurston TL, Wandel MP, von Muhlinen N, et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012 ; 482 : 414–418. [CrossRef] [PubMed] [Google Scholar]
  6. Lapaquette P, Guzzo J, Bretillon L, Bringer MA. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm 2015 ; 2015 : 398483. [PubMed] [Google Scholar]
  7. Tattoli I, Sorbara MT, Vuckovic D, et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 2012 ; 11 : 563–575. [CrossRef] [PubMed] [Google Scholar]
  8. Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008 ; 456 : 264–268. [CrossRef] [PubMed] [Google Scholar]
  9. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011 ; 12 : 222–230. [CrossRef] [PubMed] [Google Scholar]
  10. Chuang SY, Yang CH, Chou CC, et al. TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA 2013 ; 110 : 16079–16084. [CrossRef] [Google Scholar]
  11. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012 ; 13 : 255–263. [CrossRef] [PubMed] [Google Scholar]
  12. Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007 ; 3 : e111. [PubMed] [Google Scholar]
  13. Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014 ; 156 : 1045–1059. [PubMed] [Google Scholar]
  14. Zhou D, Kang KH, Spector SA. Production of interferon alpha by human immunodeficiency virus type 1 in human plasmacytoid dendritic cells is dependent on induction of autophagy. J Infect dis 2012 ; 205 : 1258–1267. [CrossRef] [PubMed] [Google Scholar]
  15. Tal MC, Sasai M, Lee HK, et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA 2009 ; 106 : 2770–2775. [CrossRef] [Google Scholar]
  16. Jounai N, Takeshita F, Kobiyama K, et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA 2007 ; 104 : 14050–14055. [CrossRef] [Google Scholar]
  17. Saitoh T, Fujita N, Hayashi T, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 2009 ; 106 : 20842–20846. [CrossRef] [Google Scholar]
  18. Liang Q, Seo GJ, Choi YJ, et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 2014 ; 15 : 228–238. [CrossRef] [PubMed] [Google Scholar]
  19. Yang CS, Rodgers M, Min CK, et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe 2012 ; 11 : 277–289. [CrossRef] [PubMed] [Google Scholar]
  20. Paul S, Kashyap AK, Jia W, et al. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity 2012 ; 36 : 947–958. [PubMed] [Google Scholar]
  21. Fliss PM, Jowers TP, Brinkmann MM, et al. Viral mediated redirection of NEMO/IKKgamma to autophagosomes curtails the inflammatory cascade. PLoS Pathog 2012 ; 8 : e1002517. [PubMed] [Google Scholar]
  22. Inomata M, Niida S, Shibata K, Into T. Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell Mol Life Sci 2012 ; 69 : 963–979. [CrossRef] [PubMed] [Google Scholar]
  23. Kovacs JR, Li C, Yang Q, et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 2012 ; 19 : 144–152. [CrossRef] [PubMed] [Google Scholar]
  24. Miller BC, Zhao Z, Stephenson LM, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2008 ; 4 : 309–314. [CrossRef] [PubMed] [Google Scholar]
  25. Hubbard VM, Valdor R, Patel B, et al. Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 2010 ; 185 : 7349–7357. [CrossRef] [PubMed] [Google Scholar]
  26. Xu X, Araki K, Li S, et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat Immunol 2014 ; 15 : 1152–1161. [CrossRef] [PubMed] [Google Scholar]
  27. Pengo N, Scolari M, Oliva L, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol 2013 ; 14 : 298–305. [CrossRef] [PubMed] [Google Scholar]
  28. Chen M, Hong MJ, Sun H, et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 2014 ; 20 : 503–510. [CrossRef] [PubMed] [Google Scholar]
  29. Chaturvedi A, Dorward D, Pierce SK. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 2008 ; 28 : 799–809. [CrossRef] [PubMed] [Google Scholar]
  30. Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 2016 ; 17 : 277–285. [CrossRef] [PubMed] [Google Scholar]
  31. Valdor R, Mocholi E, Botbol Y, et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol 2014 ; 15 : 1046–1054. [CrossRef] [PubMed] [Google Scholar]
  32. Dengjel J, Schoor O, Fischer R, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 2005 ; 102 : 7922–7927. [CrossRef] [Google Scholar]
  33. Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008 ; 455 : 396–400. [CrossRef] [PubMed] [Google Scholar]
  34. Jagannath C, Lindsey DR, Dhandayuthapani S, et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 2009 ; 15 : 267–276. [CrossRef] [PubMed] [Google Scholar]
  35. Ireland JM, Unanue ER. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 2011 ; 208 : 2625–2632. [CrossRef] [PubMed] [Google Scholar]
  36. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015 ; 34 : 2441–2464. [PubMed] [Google Scholar]
  37. Zhou D, Li P, Lin Y, et al. Lamp-2a facilitates MHC class II presentation of cytoplasmic antigens. Immunity 2005 ; 22 : 571–581. [PubMed] [Google Scholar]
  38. Romao S, Gasser N, Becker AC, et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 2013 ; 203 : 757–766. [CrossRef] [PubMed] [Google Scholar]
  39. Uhl M, Kepp O, Jusforgues-Saklani H, et al. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 2009 ; 16 : 991–1005. [CrossRef] [PubMed] [Google Scholar]
  40. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn’s disease. J Innate Immun 2013 ; 5 : 434–443. [CrossRef] [PubMed] [Google Scholar]
  41. Lapaquette P, Glasser AL, Huett A, et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microb 2010 ; 12 : 99–113. [CrossRef] [Google Scholar]
  42. Deuring JJ, Fuhler GM, Konstantinov SR, et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn’s disease. Gut 2013 ; 63 : 1081–1091. [CrossRef] [PubMed] [Google Scholar]
  43. Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010 ; 16 : 90–97. [CrossRef] [PubMed] [Google Scholar]
  44. Cadwell K, Patel KK, Maloney NS, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 2010 ; 141 : 1135–1145. [CrossRef] [PubMed] [Google Scholar]
  45. Lassen KG, Kuballa P, Conway KL, et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci USA 2014 ; 111 : 7741–7746. [CrossRef] [Google Scholar]
  46. Strisciuglio C, Miele E, Wildenberg ME, et al. T300A variant of autophagy ATG16L1 gene is associated with decreased antigen sampling and processing by dendritic cells in pediatric Crohn’s disease. Inflamm Bowel Dis 2013 ; 19 : 2339–2348. [CrossRef] [PubMed] [Google Scholar]
  47. Murthy A, Li Y, Peng I, et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014 ; 506 : 456–462. [CrossRef] [PubMed] [Google Scholar]
  48. Nguyen HT, Dalmasso G, Muller S, et al. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014 ; 146 : 508–519. [CrossRef] [PubMed] [Google Scholar]
  49. Brest P, Lapaquette P, Souidi M, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 2011 ; 43 : 242–245. [CrossRef] [PubMed] [Google Scholar]
  50. Brinar M, Vermeire S, Cleynen I, et al. Genetic variants in autophagy-related genes and granuloma formation in a cohort of surgically treated Crohn’s disease patients. J Crohns Colitis 2012 ; 6 : 43–50. [CrossRef] [PubMed] [Google Scholar]
  51. Verlhac P, Viret C, Faure M. NDP52, autophagie et pathogènes. Et le combat cessa faute de combattants. Med Sci (Paris) 2015 ; 31 : 594–597. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. La Morel E. formation de l’autophagosome : un nouveau défi pour le biologiste cellulaire. Med Sci (Paris) 2017 ; 33 : 217–220. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Trentesaux C, Fraudeau M, Romagnolo B. L’autophagie, l’homéostasie intestinale et ses pathologies. Med Sci (Paris) 2017 ; 33 : 290–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Muller S. Autophagie, autoimmunité et maladies autoimmunes. Med Sci (Paris) 2017 ; 33 : 319–327. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.