Free Access
Issue
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Autophagie
Page(s) 260 - 267
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303012
Published online 03 April 2017
  1. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012 ; 1823 : 1434–1443. [CrossRef] [Google Scholar]
  2. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J 2011 ; 434 : 365–381. [CrossRef] [PubMed] [Google Scholar]
  3. Manz DH, Blanchette NL, Paul BT, et al. Iron and cancer: recent insights. Ann NY Acad Sci 2016 ; 1368 : 149–161. [CrossRef] [Google Scholar]
  4. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 2016 ; 41 : 274–286. [CrossRef] [PubMed] [Google Scholar]
  5. Pantopoulos K, Porwal SK, Tartakoff A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012 ; 51 : 5705–5724. [CrossRef] [Google Scholar]
  6. Munoz M, Villar I, Garcia-Erce JA. An update on iron physiology. World J Gastroenterol 2009 ; 15 : 4617–4626. [CrossRef] [PubMed] [Google Scholar]
  7. Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta 2015 ; 1852 : 1347–1359. [CrossRef] [Google Scholar]
  8. McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000 ; 5 : 299–309. [CrossRef] [PubMed] [Google Scholar]
  9. Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 2014 ; 307 : G397–G409. [CrossRef] [Google Scholar]
  10. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer 2013 ; 13 : 342–355. [CrossRef] [PubMed] [Google Scholar]
  11. Drakesmith H, Nemeth E, Ganz T. Ironing out Ferroportin. Cell Metab 2015 ; 22 : 777–787. [CrossRef] [PubMed] [Google Scholar]
  12. Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 2012 ; 1823 : 1468–1483. [CrossRef] [Google Scholar]
  13. Yanatori I, Yasui Y, Tabuchi M, Kishi F. Chaperone protein involved in transmembrane transport of iron. Biochem J 2014 ; 462 : 25–37. [CrossRef] [PubMed] [Google Scholar]
  14. Grimmel M, Backhaus C, Proikas-Cezanne T. WIPI-mediated autophagy and longevity. Cells 2015 ; 4 : 202–217. [CrossRef] [PubMed] [Google Scholar]
  15. Haack TB, Hogarth P, Kruer MC, et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012 ; 91 : 1144–1149. [CrossRef] [PubMed] [Google Scholar]
  16. Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013 ; 45 : 445–449, 9e1. [CrossRef] [PubMed] [Google Scholar]
  17. Asano T, Komatsu M, Yamaguchi-Iwai Y, et al. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol 2011 ; 31 : 2040–2052. [CrossRef] [PubMed] [Google Scholar]
  18. Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J Cell Sci 2014 ; 127 : 4089–4102. [CrossRef] [PubMed] [Google Scholar]
  19. Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014 ; 509 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  20. Dowdle WE, Nyfeler B, Nagel J, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 2014 ; 16 : 1069–1079. [CrossRef] [PubMed] [Google Scholar]
  21. Kollara A, Brown TJ. Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci 2012 ; 69 : 3895–3909. [CrossRef] [PubMed] [Google Scholar]
  22. Birgisdottir AB, Lamark T, Johansen T. The LIR motif: crucial for selective autophagy. J Cell Sci 2013 ; 126 : 3237–3247. [PubMed] [Google Scholar]
  23. Mancias JD, Kimmelman AC. Mechanisms of selective autophagy in normal physiology and cancer. J Mol Biol 2016 ; 428 : 1659–1680. [CrossRef] [Google Scholar]
  24. Bellelli R, Federico G, Matte A, et al. NCOA4 Deficiency impairs systemic iron homeostasis. Cell Rep 2016 ; 14 : 411–421. [CrossRef] [PubMed] [Google Scholar]
  25. De Domenico I, Ward DM, Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood 2009 ; 114 : 4546–4551. [CrossRef] [Google Scholar]
  26. De Domenico I, Vaughn MB, Li L, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 2006 ; 25 : 5396–5404. [CrossRef] [Google Scholar]
  27. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 ; 149 : 1060–1072. [CrossRef] [PubMed] [Google Scholar]
  28. Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 ; 12 : 1425–1428. [CrossRef] [PubMed] [Google Scholar]
  29. Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res 2016 ; 26 : 1021–1032. [CrossRef] [Google Scholar]
  30. Beaumont C. Mécanismes moléculaires de l’homéostasie du fer. Med Sci (Paris) 2004 ; 20 : 68–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.