Free Access
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Page(s) 252 - 259
Section M/S Revues
Published online 03 April 2017
  1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015 ; 313 : 2263–2273. [CrossRef] [PubMed] [Google Scholar]
  2. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015 ; 12 : 231–242. [CrossRef] [PubMed] [Google Scholar]
  3. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010 ; 52 : 774–788. [CrossRef] [PubMed] [Google Scholar]
  4. Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. Novel insights into liver fibrosis. Am J Physiol Cell Physiol 2013 ; 305 : C789–C799. [CrossRef] [PubMed] [Google Scholar]
  5. Tran A, Gual P. Non-alcoholic steatohepatitis in morbidly obese patients. Clin Res Hepatol Gastroenterol 2013 ; 37 : 17–29. [Google Scholar]
  6. Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2013 ; 19 : 5250–5269. [CrossRef] [PubMed] [Google Scholar]
  7. Lotersztajn S, Julien B, Texeira-Clerc F, et al. Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2005 ; 45 : 605–628. [Google Scholar]
  8. Jiang JX, Mikami K, Venugopal S, et al. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J Hepatol 2009 ; 51 : 139–148. [CrossRef] [PubMed] [Google Scholar]
  9. Gilgenkrantz H, Collin de l’Hortet A. New insights into liver regeneration. Clin Res Hepatol Gastroenterol 2011 ; 35 : 623–629. [Google Scholar]
  10. Dubuquoy L, Louvet A, Lassailly G, et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 2015 ; 64 : 1949–1960. [CrossRef] [PubMed] [Google Scholar]
  11. Arias E, CuervoA M. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2011 ; 23 : 184–189. [CrossRef] [PubMed] [Google Scholar]
  12. Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology 2016 ; 150 : 328–339. [CrossRef] [PubMed] [Google Scholar]
  13. Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Biomed Res Int 2014 ; 2014 : 120179. [Google Scholar]
  14. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009 ; 458 : 1131–1135. [CrossRef] [PubMed] [Google Scholar]
  15. Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010 ; 11 : 467–478. [CrossRef] [PubMed] [Google Scholar]
  16. Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 2014 ; 20 : 417–432. [CrossRef] [PubMed] [Google Scholar]
  17. Ding WX, Manley S, Ni HM. The emerging role of autophagy in alcoholic liver disease. Exp Biol Med 2011 ; 236 : 546–556. [CrossRef] [PubMed] [Google Scholar]
  18. Czaja MJ. Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 2016 ; 61 : 1304–1313. [CrossRef] [PubMed] [Google Scholar]
  19. Jacquel A, Obba S, Boyer L, et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 2012 ; 119 : 4527–4531. [Google Scholar]
  20. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011 ; 469 : 221–225. [CrossRef] [PubMed] [Google Scholar]
  21. Chuang SY, Yang CH, Chou CC, et al. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA 2013 ; 110 : 16079–16084. [CrossRef] [Google Scholar]
  22. Liao X, Sluimer JC, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012 ; 15 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  23. Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 2015 ; 11 : 271–284. [CrossRef] [PubMed] [Google Scholar]
  24. Lodder J, Denaës T, Chobert MN, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2015 ; 11 : 1280–1292. [CrossRef] [PubMed] [Google Scholar]
  25. Denaës T, Lodder J, Chobert MN, et al. The cannabinoid receptor 2 protects against alcoholic liver disease via a macrophage autophagy-dependent pathway. Sci Rep 2016 ; 6 : 28806. [CrossRef] [PubMed] [Google Scholar]
  26. Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis. Biomed Res Int 2014 ; 2014 : 869390. [Google Scholar]
  27. Hidvegi T, Ewing M, Hale P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010 ; 329 : 229–232. [Google Scholar]
  28. Li H, Peng X, Wang Y, et al. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 2016 ; 12 : 1472–1486. [CrossRef] [PubMed] [Google Scholar]
  29. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012 ; 142 : 938–946. [CrossRef] [PubMed] [Google Scholar]
  30. Thoen LF, Guimarães EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol 2011 ; 55 : 1353–1360. [CrossRef] [PubMed] [Google Scholar]
  31. Ghavami S, Cunnington RH, Gupta S, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 2015 ; 6 : e1696. [CrossRef] [PubMed] [Google Scholar]
  32. Lin CW, Chen YS, Lin CC, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep 2015 ; 5 : 15807. [CrossRef] [PubMed] [Google Scholar]
  33. Ni HM, Woolbright BL, Williams J, et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepaticautophagy. J Hepatol 2014 ; 61 : 617–625. [CrossRef] [PubMed] [Google Scholar]
  34. Toshima T, Shirabe K, Fukuhara T, et al. Suppression of autophagy during liver regeneration impairs energy charge and hepatocyte senescence in mice. Hepatology 2014 ; 60 : 290–300. [CrossRef] [PubMed] [Google Scholar]
  35. Xue F, Hu L, Ge R, et al. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation. Cancer Lett 2016 ; 371 : 38–47. [Google Scholar]
  36. Lazova R, Camp RL, Klump V, et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis and poor outcome. Clin Cancer Res 2012 ; 18 : 370–379. [CrossRef] [PubMed] [Google Scholar]
  37. Ding ZB, Shi YH, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008 ; 68 : 9167–9175. [Google Scholar]
  38. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003 ; 112 : 1809–1820. [CrossRef] [PubMed] [Google Scholar]
  39. Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011 ; 25 : 795–800. [CrossRef] [PubMed] [Google Scholar]
  40. Inami Y, Waguri S, Sakamoto A, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011 ; 193 : 275–284. [CrossRef] [PubMed] [Google Scholar]
  41. Kon M, Kiffin R, Koga H, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med 2011 ; 3 : 109–117. [Google Scholar]
  42. Mitsuishi Y, Taguchi K, Kawatani Y, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012 ; 22 : 60–79. [Google Scholar]
  43. Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 2016 ; 29 : 935–948. [CrossRef] [PubMed] [Google Scholar]
  44. Li J, Yang B, Zhou Q, Wu Y, et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013 ; 34 : 1343–1351. [CrossRef] [PubMed] [Google Scholar]
  45. Peng YF, Shi YH, Ding ZB, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013 ; 9 : 2056–2068. [CrossRef] [PubMed] [Google Scholar]
  46. Toso C, Merani S, Bigam DL, et al. Sirolimus-based immuno-suppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology 2010 ; 51 : 1237–1243. [CrossRef] [PubMed] [Google Scholar]
  47. Gilgenkrantz H. Une seule cellule souche dans le foie : l’hépatocyte. Med Sci (Paris) 2015 ; 31 : 357–359. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Codogno P. Les gènes ATG et la macro-autophagie. Med Sci (Paris) 2004 ; 20 : 734–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Vigié P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.