Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 3, Mars 2017
Autophagie
Page(s) 252 - 259
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303011
Publié en ligne 3 avril 2017
  1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015 ; 313 : 2263–2273. [CrossRef] [PubMed] [Google Scholar]
  2. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015 ; 12 : 231–242. [CrossRef] [PubMed] [Google Scholar]
  3. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010 ; 52 : 774–788. [CrossRef] [PubMed] [Google Scholar]
  4. Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. Novel insights into liver fibrosis. Am J Physiol Cell Physiol 2013 ; 305 : C789–C799. [CrossRef] [PubMed] [Google Scholar]
  5. Tran A, Gual P. Non-alcoholic steatohepatitis in morbidly obese patients. Clin Res Hepatol Gastroenterol 2013 ; 37 : 17–29. [Google Scholar]
  6. Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 2013 ; 19 : 5250–5269. [CrossRef] [PubMed] [Google Scholar]
  7. Lotersztajn S, Julien B, Texeira-Clerc F, et al. Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2005 ; 45 : 605–628. [Google Scholar]
  8. Jiang JX, Mikami K, Venugopal S, et al. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J Hepatol 2009 ; 51 : 139–148. [CrossRef] [PubMed] [Google Scholar]
  9. Gilgenkrantz H, Collin de l’Hortet A. New insights into liver regeneration. Clin Res Hepatol Gastroenterol 2011 ; 35 : 623–629. [Google Scholar]
  10. Dubuquoy L, Louvet A, Lassailly G, et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut 2015 ; 64 : 1949–1960. [CrossRef] [PubMed] [Google Scholar]
  11. Arias E, CuervoA M. Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2011 ; 23 : 184–189. [CrossRef] [PubMed] [Google Scholar]
  12. Madrigal-Matute J, Cuervo AM. Regulation of liver metabolism by autophagy. Gastroenterology 2016 ; 150 : 328–339. [CrossRef] [PubMed] [Google Scholar]
  13. Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Biomed Res Int 2014 ; 2014 : 120179. [Google Scholar]
  14. Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009 ; 458 : 1131–1135. [CrossRef] [PubMed] [Google Scholar]
  15. Yang L, Li P, Fu S, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010 ; 11 : 467–478. [CrossRef] [PubMed] [Google Scholar]
  16. Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 2014 ; 20 : 417–432. [CrossRef] [PubMed] [Google Scholar]
  17. Ding WX, Manley S, Ni HM. The emerging role of autophagy in alcoholic liver disease. Exp Biol Med 2011 ; 236 : 546–556. [CrossRef] [PubMed] [Google Scholar]
  18. Czaja MJ. Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 2016 ; 61 : 1304–1313. [CrossRef] [PubMed] [Google Scholar]
  19. Jacquel A, Obba S, Boyer L, et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 2012 ; 119 : 4527–4531. [Google Scholar]
  20. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011 ; 469 : 221–225. [CrossRef] [PubMed] [Google Scholar]
  21. Chuang SY, Yang CH, Chou CC, et al. TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci USA 2013 ; 110 : 16079–16084. [CrossRef] [Google Scholar]
  22. Liao X, Sluimer JC, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012 ; 15 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  23. Liu K, Zhao E, Ilyas G, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 2015 ; 11 : 271–284. [CrossRef] [PubMed] [Google Scholar]
  24. Lodder J, Denaës T, Chobert MN, et al. Macrophage autophagy protects against liver fibrosis in mice. Autophagy 2015 ; 11 : 1280–1292. [CrossRef] [PubMed] [Google Scholar]
  25. Denaës T, Lodder J, Chobert MN, et al. The cannabinoid receptor 2 protects against alcoholic liver disease via a macrophage autophagy-dependent pathway. Sci Rep 2016 ; 6 : 28806. [CrossRef] [PubMed] [Google Scholar]
  26. Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis. Biomed Res Int 2014 ; 2014 : 869390. [Google Scholar]
  27. Hidvegi T, Ewing M, Hale P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010 ; 329 : 229–232. [Google Scholar]
  28. Li H, Peng X, Wang Y, et al. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 2016 ; 12 : 1472–1486. [CrossRef] [PubMed] [Google Scholar]
  29. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012 ; 142 : 938–946. [CrossRef] [PubMed] [Google Scholar]
  30. Thoen LF, Guimarães EL, Dollé L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol 2011 ; 55 : 1353–1360. [CrossRef] [PubMed] [Google Scholar]
  31. Ghavami S, Cunnington RH, Gupta S, et al. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 2015 ; 6 : e1696. [CrossRef] [PubMed] [Google Scholar]
  32. Lin CW, Chen YS, Lin CC, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep 2015 ; 5 : 15807. [CrossRef] [PubMed] [Google Scholar]
  33. Ni HM, Woolbright BL, Williams J, et al. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepaticautophagy. J Hepatol 2014 ; 61 : 617–625. [CrossRef] [PubMed] [Google Scholar]
  34. Toshima T, Shirabe K, Fukuhara T, et al. Suppression of autophagy during liver regeneration impairs energy charge and hepatocyte senescence in mice. Hepatology 2014 ; 60 : 290–300. [CrossRef] [PubMed] [Google Scholar]
  35. Xue F, Hu L, Ge R, et al. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation. Cancer Lett 2016 ; 371 : 38–47. [Google Scholar]
  36. Lazova R, Camp RL, Klump V, et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis and poor outcome. Clin Cancer Res 2012 ; 18 : 370–379. [CrossRef] [PubMed] [Google Scholar]
  37. Ding ZB, Shi YH, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008 ; 68 : 9167–9175. [Google Scholar]
  38. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003 ; 112 : 1809–1820. [CrossRef] [PubMed] [Google Scholar]
  39. Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011 ; 25 : 795–800. [CrossRef] [PubMed] [Google Scholar]
  40. Inami Y, Waguri S, Sakamoto A, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011 ; 193 : 275–284. [CrossRef] [PubMed] [Google Scholar]
  41. Kon M, Kiffin R, Koga H, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med 2011 ; 3 : 109–117. [Google Scholar]
  42. Mitsuishi Y, Taguchi K, Kawatani Y, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012 ; 22 : 60–79. [Google Scholar]
  43. Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 2016 ; 29 : 935–948. [CrossRef] [PubMed] [Google Scholar]
  44. Li J, Yang B, Zhou Q, Wu Y, et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 2013 ; 34 : 1343–1351. [CrossRef] [PubMed] [Google Scholar]
  45. Peng YF, Shi YH, Ding ZB, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013 ; 9 : 2056–2068. [CrossRef] [PubMed] [Google Scholar]
  46. Toso C, Merani S, Bigam DL, et al. Sirolimus-based immuno-suppression is associated with increased survival after liver transplantation for hepatocellular carcinoma. Hepatology 2010 ; 51 : 1237–1243. [CrossRef] [PubMed] [Google Scholar]
  47. Gilgenkrantz H. Une seule cellule souche dans le foie : l’hépatocyte. Med Sci (Paris) 2015 ; 31 : 357–359. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Codogno P. Les gènes ATG et la macro-autophagie. Med Sci (Paris) 2004 ; 20 : 734–736. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Vigié P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.