Free Access
Med Sci (Paris)
Volume 32, Number 12, Décembre 2016
Page(s) 1111 - 1119
Section M/S Revues
Published online 03 January 2017
  1. Lyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015 ; 47 : 199–208. [CrossRef] [PubMed] [Google Scholar]
  2. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay : an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 2015 ; 16 : 665–677. [CrossRef] [PubMed] [Google Scholar]
  3. De la Grange P, Dutertre M, Correa M, Auboeuf D. A new advance in alternative splicing databases : from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. BMC Bioinformatics 2007 ; 8 : 180. [CrossRef] [PubMed] [Google Scholar]
  4. Yates A, Akanni W, Amode MR, et al. Ensembl 2016. Nucleic Acids Res 2016 ; 44 : D710–D716. [CrossRef] [PubMed] [Google Scholar]
  5. De la Grange P, Gratadou L, Delord M, et al. Splicing factor and exon profiling across human tissues. Nucleic Acids Res 2010 ; 38 : 2825–2838. [CrossRef] [PubMed] [Google Scholar]
  6. Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 2016 ; 213 : 15–22. [CrossRef] [PubMed] [Google Scholar]
  7. Kelemen O, Convertini P, Zhang Z, et al. Function of alternative splicing. Gene 2013 ; 514 : 1–30. [CrossRef] [Google Scholar]
  8. Redis RS, Vela LE, Lu W, et al. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol Cell 2016 ; 61 : 520–534. [CrossRef] [PubMed] [Google Scholar]
  9. Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015 ; 84 : 165–198. [CrossRef] [PubMed] [Google Scholar]
  10. Moehle EA, Braberg H, Krogan NJ, Guthrie C. Adventures in time and space : splicing efficiency and RNA polymerase II elongation rate. RNA Biol 2014 ; 11 : 313–319. [CrossRef] [Google Scholar]
  11. Mort M, Sterne-Weiler T, Li B, et al. MutPred splice : machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 2014 ; 15 : R19. [CrossRef] [PubMed] [Google Scholar]
  12. Lim KH, Ferraris L, Filloux ME, et al. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 2011 ; 108 : 11093–11098. [CrossRef] [Google Scholar]
  13. López-Bigas N, Audit B, Ouzounis C, et al. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005 ; 579 : 1900–1903. [CrossRef] [PubMed] [Google Scholar]
  14. Busslinger M, Moschonas N, Flavell RA. β+ thalassemia : aberrant splicing results from a single point mutation in an intron. Cell 1981 ; 27 : 289–298. [CrossRef] [PubMed] [Google Scholar]
  15. Fletcher S, Meloni PL, Johnsen RD, et al. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genom Med 2013 ; 1 : 162–173. [CrossRef] [Google Scholar]
  16. Ramalho AS, Beck S, Penque D, et al. Transcript analysis of the cystic fibrosis splicing mutation 1525–1G>A shows use of multiple alternative splicing sites and suggests a putative role of exonic splicing enhancers. J Med Genet 2003 ; 40 : e88. [CrossRef] [PubMed] [Google Scholar]
  17. Maimaiti M, Takahashi S, Okajima K, et al. Silent exonic mutation in the acid-alpha-glycosidase gene that causes glycogen storage disease type II by affecting mRNA splicing. J Hum Genet 2009 ; 54 : 493–496. [CrossRef] [PubMed] [Google Scholar]
  18. Zampieri S, Buratti E, Dominissini S, et al. Splicing mutations in glycogen-storage disease type II : evaluation of the full spectrum of mutations and their relation to patients’ phenotypes. Eur J Hum Genet 2011 ; 19 : 422–431. [CrossRef] [PubMed] [Google Scholar]
  19. Luo YB, Mastaglia FL, Wilton SD. Normal and aberrant splicing of LMNA. J Med Genet 2014 ; 51 : 215–223. [CrossRef] [PubMed] [Google Scholar]
  20. Morel CF, Thomas MA, Cao H, et al. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J Clin Endocrinol Metab 2006 ; 91 : 2689–2695. [CrossRef] [PubMed] [Google Scholar]
  21. Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003 ; 423 : 293–298. [CrossRef] [PubMed] [Google Scholar]
  22. Otomo J, Kure S, Shiba T, et al. Electrophysiological and histopathological characteristics of progressive atrioventricular block accompanied by familial dilated cardiomyopathy caused by a novel mutation of lamin A/C gene. J Cardiovasc Electrophysiol 2005 ; 16 : 137–145. [CrossRef] [PubMed] [Google Scholar]
  23. Di Leo E, Panico F, Tarugi P, et al. A point mutation in the lariat branch point of intron 6 of NPC1 as the cause of abnormal pre-mRNA splicing in NiemannPick type C disease. Hum Mutat 2004 ; 24 : 440. [CrossRef] [Google Scholar]
  24. Crotti L, Lewandowska MA, Schwartz PJ, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm 2009 ; 6 : 212–218. [CrossRef] [PubMed] [Google Scholar]
  25. Bishop DF, Schneider-Yin X, Clavero S, et al. Congenital erythropoietic porphyria : a novel uroporphyrinogen III synthase branchpoint mutation reveals underlying wild-type alternatively spliced transcripts. Blood 2010 ; 115 : 1062–1069. [CrossRef] [Google Scholar]
  26. Tsui LC, Dorfman R. The cystic fibrosis gene : a molecular genetic perspective. Cold Spring Harb Perspect Med 2013 ; 3 : a009472. [PubMed] [Google Scholar]
  27. Montejo JM, Magallon M, Tizzano E, Solera J. Identification of twenty-one new mutations in the factor IX gene by SSCP analysis. Hum Mutat 1999 ; 13 : 160–165. [CrossRef] [PubMed] [Google Scholar]
  28. Niblock M, Gallo JM. Tau alternative splicing in familial and sporadic tauopathies. Biochem Soc Trans 2012 ; 40 : 677–680. [CrossRef] [PubMed] [Google Scholar]
  29. Cartegni L, Hastings ML, Calarco JA, et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006 ; 78 : 63–77. [CrossRef] [PubMed] [Google Scholar]
  30. Chen X, Liu Y, Sheng X, et al. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet 2014 ; 23 : 2926–2939. [CrossRef] [PubMed] [Google Scholar]
  31. Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011 ; 365 : 1384–1395. [CrossRef] [PubMed] [Google Scholar]
  32. Carpentier C, Ghanem D, Fernandez-Gomez FJ, et al. Tau exon 2 responsive elements deregulated in myotonic dystrophy type I are proximal to exon 2 and synergistically regulated by MBNL1 and MBNL2. Biochim Biophys Acta 2014 ; 1842 : 654–664. [CrossRef] [PubMed] [Google Scholar]
  33. Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD : disrupted RNA and protein homeostasis. Neuron 2013 ; 79 : 416–438. [CrossRef] [PubMed] [Google Scholar]
  34. Kole R, Krainer AR, Altman S. RNA therapeutics : beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012 ; 11 : 125–140. [PubMed] [Google Scholar]
  35. Faravelli I, Nizzardo M, Comi GP, Corti S. Spinal muscular atrophy : recent therapeutic advances for an old challenge. Nat Rev Neurol 2015 ; 11 : 351–359. [CrossRef] [PubMed] [Google Scholar]
  36. Childs-Disney JL, Stepniak-Konieczna E, Tran T, et al. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 2013 ; 4 : 2044. [PubMed] [Google Scholar]
  37. Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 2015 ; 87 : 104–107. [CrossRef] [PubMed] [Google Scholar]
  38. Osorio FG, Navarro CL, Cadiñanos J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 2011 ; 3 : 106ra107. [CrossRef] [PubMed] [Google Scholar]
  39. Li JW, Lai KP, Ching AK, Chan TF. Transcriptome sequencing of Chinese and Caucasian population identifies ethnic-associated differential transcript abundance of heterogeneous nuclear ribonucleoprotein K (hnRNPK). Genomics 2014 ; 103 : 56–64. [CrossRef] [PubMed] [Google Scholar]
  40. Stein S, Lu ZX, Bahrami-Samani E, et al. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Nucleic Acids Res 2015 ; 43 : 10612–10622. [CrossRef] [PubMed] [Google Scholar]
  41. Dujardin G, Daguenet E, Bernard DG, et al. L’épissage des ARN pré-messagers : quand le splicéosome perd pied. Med Sci (Paris) 2016 ; 32 : 1103–1110. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.