Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 12, Décembre 2016
|
|
---|---|---|
Page(s) | 1111 - 1119 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163212015 | |
Publié en ligne | 3 janvier 2017 |
- Lyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015 ; 47 : 199–208. [CrossRef] [PubMed] [Google Scholar]
- Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay : an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 2015 ; 16 : 665–677. [CrossRef] [PubMed] [Google Scholar]
- De la Grange P, Dutertre M, Correa M, Auboeuf D. A new advance in alternative splicing databases : from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. BMC Bioinformatics 2007 ; 8 : 180. [CrossRef] [PubMed] [Google Scholar]
- Yates A, Akanni W, Amode MR, et al. Ensembl 2016. Nucleic Acids Res 2016 ; 44 : D710–D716. [CrossRef] [PubMed] [Google Scholar]
- De la Grange P, Gratadou L, Delord M, et al. Splicing factor and exon profiling across human tissues. Nucleic Acids Res 2010 ; 38 : 2825–2838. [CrossRef] [PubMed] [Google Scholar]
- Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 2016 ; 213 : 15–22. [CrossRef] [PubMed] [Google Scholar]
- Kelemen O, Convertini P, Zhang Z, et al. Function of alternative splicing. Gene 2013 ; 514 : 1–30. [CrossRef] [Google Scholar]
- Redis RS, Vela LE, Lu W, et al. Allele-specific reprogramming of cancer metabolism by the long non-coding RNA CCAT2. Mol Cell 2016 ; 61 : 520–534. [CrossRef] [PubMed] [Google Scholar]
- Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 2015 ; 84 : 165–198. [CrossRef] [PubMed] [Google Scholar]
- Moehle EA, Braberg H, Krogan NJ, Guthrie C. Adventures in time and space : splicing efficiency and RNA polymerase II elongation rate. RNA Biol 2014 ; 11 : 313–319. [CrossRef] [Google Scholar]
- Mort M, Sterne-Weiler T, Li B, et al. MutPred splice : machine learning-based prediction of exonic variants that disrupt splicing. Genome Biol 2014 ; 15 : R19. [CrossRef] [PubMed] [Google Scholar]
- Lim KH, Ferraris L, Filloux ME, et al. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 2011 ; 108 : 11093–11098. [CrossRef] [Google Scholar]
- López-Bigas N, Audit B, Ouzounis C, et al. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005 ; 579 : 1900–1903. [CrossRef] [PubMed] [Google Scholar]
- Busslinger M, Moschonas N, Flavell RA. β+ thalassemia : aberrant splicing results from a single point mutation in an intron. Cell 1981 ; 27 : 289–298. [CrossRef] [PubMed] [Google Scholar]
- Fletcher S, Meloni PL, Johnsen RD, et al. Antisense suppression of donor splice site mutations in the dystrophin gene transcript. Mol Genet Genom Med 2013 ; 1 : 162–173. [CrossRef] [Google Scholar]
- Ramalho AS, Beck S, Penque D, et al. Transcript analysis of the cystic fibrosis splicing mutation 1525–1G>A shows use of multiple alternative splicing sites and suggests a putative role of exonic splicing enhancers. J Med Genet 2003 ; 40 : e88. [CrossRef] [PubMed] [Google Scholar]
- Maimaiti M, Takahashi S, Okajima K, et al. Silent exonic mutation in the acid-alpha-glycosidase gene that causes glycogen storage disease type II by affecting mRNA splicing. J Hum Genet 2009 ; 54 : 493–496. [CrossRef] [PubMed] [Google Scholar]
- Zampieri S, Buratti E, Dominissini S, et al. Splicing mutations in glycogen-storage disease type II : evaluation of the full spectrum of mutations and their relation to patients’ phenotypes. Eur J Hum Genet 2011 ; 19 : 422–431. [CrossRef] [PubMed] [Google Scholar]
- Luo YB, Mastaglia FL, Wilton SD. Normal and aberrant splicing of LMNA. J Med Genet 2014 ; 51 : 215–223. [CrossRef] [PubMed] [Google Scholar]
- Morel CF, Thomas MA, Cao H, et al. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J Clin Endocrinol Metab 2006 ; 91 : 2689–2695. [CrossRef] [PubMed] [Google Scholar]
- Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003 ; 423 : 293–298. [CrossRef] [PubMed] [Google Scholar]
- Otomo J, Kure S, Shiba T, et al. Electrophysiological and histopathological characteristics of progressive atrioventricular block accompanied by familial dilated cardiomyopathy caused by a novel mutation of lamin A/C gene. J Cardiovasc Electrophysiol 2005 ; 16 : 137–145. [CrossRef] [PubMed] [Google Scholar]
- Di Leo E, Panico F, Tarugi P, et al. A point mutation in the lariat branch point of intron 6 of NPC1 as the cause of abnormal pre-mRNA splicing in NiemannPick type C disease. Hum Mutat 2004 ; 24 : 440. [CrossRef] [Google Scholar]
- Crotti L, Lewandowska MA, Schwartz PJ, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm 2009 ; 6 : 212–218. [CrossRef] [PubMed] [Google Scholar]
- Bishop DF, Schneider-Yin X, Clavero S, et al. Congenital erythropoietic porphyria : a novel uroporphyrinogen III synthase branchpoint mutation reveals underlying wild-type alternatively spliced transcripts. Blood 2010 ; 115 : 1062–1069. [CrossRef] [Google Scholar]
- Tsui LC, Dorfman R. The cystic fibrosis gene : a molecular genetic perspective. Cold Spring Harb Perspect Med 2013 ; 3 : a009472. [PubMed] [Google Scholar]
- Montejo JM, Magallon M, Tizzano E, Solera J. Identification of twenty-one new mutations in the factor IX gene by SSCP analysis. Hum Mutat 1999 ; 13 : 160–165. [CrossRef] [PubMed] [Google Scholar]
- Niblock M, Gallo JM. Tau alternative splicing in familial and sporadic tauopathies. Biochem Soc Trans 2012 ; 40 : 677–680. [CrossRef] [PubMed] [Google Scholar]
- Cartegni L, Hastings ML, Calarco JA, et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006 ; 78 : 63–77. [CrossRef] [PubMed] [Google Scholar]
- Chen X, Liu Y, Sheng X, et al. PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum Mol Genet 2014 ; 23 : 2926–2939. [CrossRef] [PubMed] [Google Scholar]
- Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011 ; 365 : 1384–1395. [CrossRef] [PubMed] [Google Scholar]
- Carpentier C, Ghanem D, Fernandez-Gomez FJ, et al. Tau exon 2 responsive elements deregulated in myotonic dystrophy type I are proximal to exon 2 and synergistically regulated by MBNL1 and MBNL2. Biochim Biophys Acta 2014 ; 1842 : 654–664. [CrossRef] [PubMed] [Google Scholar]
- Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD : disrupted RNA and protein homeostasis. Neuron 2013 ; 79 : 416–438. [CrossRef] [PubMed] [Google Scholar]
- Kole R, Krainer AR, Altman S. RNA therapeutics : beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012 ; 11 : 125–140. [PubMed] [Google Scholar]
- Faravelli I, Nizzardo M, Comi GP, Corti S. Spinal muscular atrophy : recent therapeutic advances for an old challenge. Nat Rev Neurol 2015 ; 11 : 351–359. [CrossRef] [PubMed] [Google Scholar]
- Childs-Disney JL, Stepniak-Konieczna E, Tran T, et al. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nat Commun 2013 ; 4 : 2044. [PubMed] [Google Scholar]
- Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 2015 ; 87 : 104–107. [CrossRef] [PubMed] [Google Scholar]
- Osorio FG, Navarro CL, Cadiñanos J, et al. Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 2011 ; 3 : 106ra107. [CrossRef] [PubMed] [Google Scholar]
- Li JW, Lai KP, Ching AK, Chan TF. Transcriptome sequencing of Chinese and Caucasian population identifies ethnic-associated differential transcript abundance of heterogeneous nuclear ribonucleoprotein K (hnRNPK). Genomics 2014 ; 103 : 56–64. [CrossRef] [PubMed] [Google Scholar]
- Stein S, Lu ZX, Bahrami-Samani E, et al. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Nucleic Acids Res 2015 ; 43 : 10612–10622. [CrossRef] [PubMed] [Google Scholar]
- Dujardin G, Daguenet E, Bernard DG, et al. L’épissage des ARN pré-messagers : quand le splicéosome perd pied. Med Sci (Paris) 2016 ; 32 : 1103–1110. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.