Free Access
Issue |
Med Sci (Paris)
Volume 32, Number 12, Décembre 2016
|
|
---|---|---|
Page(s) | 1103 - 1110 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163212014 | |
Published online | 03 January 2017 |
- Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harbor Perspect Biol 2011 ; 3. [Google Scholar]
- Hang J, Wan R, Yan C, Shi Y. Structural basis of pre-mRNA splicing. Science 2015 ; 349 : 1191–1198. [CrossRef] [PubMed] [Google Scholar]
- Bourgeois CF, Mortreux F, Auboeuf D. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat Rev Mol Cell Biol 2016 ; 17 : 426–438. [CrossRef] [PubMed] [Google Scholar]
- Turunen JJ, Niemela EH, Verma B, Frilander MJ. The significant other : splicing by the minor spliceosome. Wiley Interdiscip Rev RNA 2013 ; 4 : 61–76. [CrossRef] [PubMed] [Google Scholar]
- Caceres JF, Kornblihtt AR. Alternative splicing : multiple control mechanisms and involvement in human disease. Trends Genet 2002 ; 18 : 186–193. [CrossRef] [PubMed] [Google Scholar]
- Ule J, Ule A, Spencer J, et al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005 ; 37 : 844–852. [CrossRef] [PubMed] [Google Scholar]
- Corcos L, Solier S. Épissage alternatif, pathologie et thérapeutique moléculaire. Med Sci (Paris) 2005 ; 21 : 253–260. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Padgett RA. New connections between splicing and human disease. Trends Genet 2012 ; 28 : 147–154. [CrossRef] [PubMed] [Google Scholar]
- Tsui LC, Dorfman R. The cystic fibrosis gene : a molecular genetic perspective. Cold Spring Harbor Perspect Med 2013 ; 3 : a009472. [Google Scholar]
- Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol 2014 ; 15 : 108–121. [CrossRef] [PubMed] [Google Scholar]
- Monani UR, Lorson CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999 ; 8 : 1177–1183. [CrossRef] [PubMed] [Google Scholar]
- Tanackovic G, Ransijn A, Thibault P, et al. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 2011 ; 20 : 2116–2130. [CrossRef] [PubMed] [Google Scholar]
- Tanackovic G, Ransijn A, Ayuso C, et al. A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and autosomal-dominant retinitis pigmentosa. Am J Hum Genet 2011 ; 88 : 643–649. [CrossRef] [PubMed] [Google Scholar]
- Lund IC, Vestergaard EM, Christensen R, et al. Prenatal diagnosis of Nager syndrome in a 12-week-old fetus with a whole gene deletion of SF3B4 by chromosomal microarray. Eur J Med Genet 2016 ; 59 : 48–51. [CrossRef] [PubMed] [Google Scholar]
- Shchepachev V, Wischnewski H, Missiaglia E, et al. Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3’-to-5’ RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2012 ; 2 : 855–865. [CrossRef] [PubMed] [Google Scholar]
- Argente J, Flores R, Gutierrez-Arumi A, et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med 2014 ; 6 : 299–306. [CrossRef] [PubMed] [Google Scholar]
- He H, Liyanarachchi S, Akagi K, et al. Mutations in U4atac snRNA, a component of the minor splicéosome, in the developmental disorder MOPD I. Science 2011 ; 332 : 238–240. [CrossRef] [PubMed] [Google Scholar]
- Reber S, Stettler J, Filosa G, et al. Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants. EMBO J 2016 ; 35 : 1504–1521. [CrossRef] [PubMed] [Google Scholar]
- Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 2004 ; 4 : 177–183. [CrossRef] [PubMed] [Google Scholar]
- Liu J, Lee W, Jiang Z, et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 2012 ; 22 : 2315–2327. [CrossRef] [PubMed] [Google Scholar]
- Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015 ; 5 : 850–859. [CrossRef] [PubMed] [Google Scholar]
- Supek F, Minana B, Valcarcel J, et al. Synonymous mutations frequently act as driver mutations in human cancers. Cell 2014 ; 156 : 1324–1335. [CrossRef] [PubMed] [Google Scholar]
- Sveen A, Kilpinen S, Ruusulehto A, et al. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2016 ; 35 : 2413–2427. [CrossRef] [PubMed] [Google Scholar]
- Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011 ; 478 : 64–69. [CrossRef] [PubMed] [Google Scholar]
- Damm F, Nguyen-Khac F, Kosmider O, et al. Mutations des gènes impliqués dans l’épissage dans les hémopathies malignes humaines. Med Sci (Paris) 2012 ; 28 : 449–453. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Dolatshad H, Pellagatti A, Fernandez-Mercado M, et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015 ; 29 : 1092–1103. [CrossRef] [PubMed] [Google Scholar]
- Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012 ; 44 : 47–52. [CrossRef] [PubMed] [Google Scholar]
- Harbour JW, Roberson ED, Anbunathan H, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat Genet 2013 ; 45 : 133–135. [CrossRef] [PubMed] [Google Scholar]
- Cancer Genome Atlas. N. Comprehensive molecular portraits of human breast tumours. Nature 2012 ; 490 : 61–70. [CrossRef] [PubMed] [Google Scholar]
- Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012 ; 491 : 399–405. [CrossRef] [PubMed] [Google Scholar]
- Darman RB, Seiler M, Agrawal AA, et al. Cancer-associated SF3B1 Hotspot mutations induce cryptic 3’ splice site selection through use of a different branch point. Cell Rep 2015 ; 13 : 1033–1045. [CrossRef] [PubMed] [Google Scholar]
- Thol F, Kade S, Schlarmann C, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 2012 ; 119 : 3578–3584. [CrossRef] [Google Scholar]
- Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012 ; 150 : 1107–1120. [CrossRef] [PubMed] [Google Scholar]
- Lovf M, Thomassen GO, Bakken AC, et al. Fusion gene microarray reveals cancer type-specificity among fusion genes. Genes Chrom Cancer 2011 ; 50 : 348–357. [CrossRef] [Google Scholar]
- Bai B, Hales CM, Chen PC, et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci USA 2013 ; 110 : 16562–16567. [CrossRef] [Google Scholar]
- Fu RH, Liu SP, Huang SJ, et al. Aberrant alternative splicing events in Parkinson’s disease. Cell Transplant 2013 ; 22 : 653–661. [CrossRef] [PubMed] [Google Scholar]
- Venables JP. Aberrant and alternative splicing in cancer. Cancer Res 2004 ; 64 : 7647–7654. [CrossRef] [Google Scholar]
- Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene 2014 ; 33 : 5311–5318. [CrossRef] [PubMed] [Google Scholar]
- Boise LH, Gonzalez-Garcia M, Postema CE, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993 ; 74 : 597–608. [CrossRef] [PubMed] [Google Scholar]
- Ladomery MR, Harper SJ, Bates DO. Alternative splicing in angiogenesis : the vascular endothelial growth factor paradigm. Cancer Lett 2007 ; 249 : 133–142. [CrossRef] [Google Scholar]
- Birzele F, Voss E, Nopora A, et al. CD44 isoform status predicts response to treatment with anti-CD44 antibody in cancer patients. Clin Cancer Res 2015 ; 21 : 2753–2762. [CrossRef] [PubMed] [Google Scholar]
- Eswaran J, Horvath A, Godbole S, et al. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 2013 ; 3 : 1689. [CrossRef] [PubMed] [Google Scholar]
- Venables JP, Klinck R, Koh C, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009 ; 16 : 670–676. [CrossRef] [PubMed] [Google Scholar]
- Nihei Z, Ichikawa W, Kojima K, et al. The positive relationship between the expression of CD44 variant 6 and prognosis in colorectal cancer. Surg Today 1996 ; 26 : 760–761. [CrossRef] [PubMed] [Google Scholar]
- Zaharieva E, Chipman JK, Soller M. Alternative splicing interference by xenobiotics. Toxicology 2012 ; 296 : 1–12. [CrossRef] [PubMed] [Google Scholar]
- Daguenet E, Dujardin G, Valcarcel J. The pathogenicity of splicing defects : mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep 2015 ; 16 : 1640–1655. [CrossRef] [PubMed] [Google Scholar]
- Luco RF, Pan Q, Tominaga K, et al. Regulation of alternative splicing by histone modifications. Science 2010 ; 327 : 996–1000. [CrossRef] [PubMed] [Google Scholar]
- Luco RF, Allo M, Schor IE, et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011 ; 144 : 16–26. [CrossRef] [PubMed] [Google Scholar]
- Hao Y, Colak R, Teyra J, et al. Semi-supervised learning predicts approximately one third of the alternative splicing isoforms as functional proteins. Cell Rep 2015 ; 12 : 183–189. [CrossRef] [PubMed] [Google Scholar]
- De la Grange P. Altérations de l’épissage et maladies rares. Med Sci (Paris) 2016 ; 32 : 1111–1119. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.