Free Access
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
Page(s) 974 - 982
Section Le microbiote : cet inconnu qui réside en nous
Published online 23 December 2016
  1. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012 ; 489 : 231–241. [CrossRef] [PubMed] [Google Scholar]
  2. Holzapfel WH, Haberer P, Snel J, et al. Overview of gut flora and probiotics. Int J Food Microbiol 1998 ; 41 : 85–101. [CrossRef] [PubMed] [Google Scholar]
  3. Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 2005 ; 11 : 1131–1140. [CrossRef] [PubMed] [Google Scholar]
  4. Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev 2010 ; 90 : 859–904. [CrossRef] [PubMed] [Google Scholar]
  5. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009 ; 9 : 313–323. [CrossRef] [PubMed] [Google Scholar]
  6. Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008 ; 455 : 808–812. [CrossRef] [PubMed] [Google Scholar]
  7. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009 ; 139 : 485–498. [CrossRef] [PubMed] [Google Scholar]
  8. Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011 ; 332 : 974–977. [CrossRef] [PubMed] [Google Scholar]
  9. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013 ; 500 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  10. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013 ; 504 : 446–450. [CrossRef] [PubMed] [Google Scholar]
  11. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013 ; 13 : 800–812. [CrossRef] [PubMed] [Google Scholar]
  12. Wang JL, Chang CH, Lin JW, et al. Infection, antibiotic therapy and risk of colorectal cancer: a nationwide nested case-control study in patients with Type 2 diabetes mellitus. Int J Cancer 2014 ; 135 : 956–967. [CrossRef] [PubMed] [Google Scholar]
  13. Garrett WS, Punit S, Gallini CA, et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 2009 ; 16 : 208–219. [CrossRef] [PubMed] [Google Scholar]
  14. Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010 ; 8 : 292–300. [CrossRef] [PubMed] [Google Scholar]
  15. Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012 ; 33 : 1231–1238. [CrossRef] [PubMed] [Google Scholar]
  16. Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell 2014 ; 158 : 288–299. [CrossRef] [PubMed] [Google Scholar]
  17. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013 ; 499 : 97–101. [CrossRef] [PubMed] [Google Scholar]
  18. Dapito DH, Mencin A, Gwak G-Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012 ; 21 : 504–516. [CrossRef] [PubMed] [Google Scholar]
  19. Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 2012 ; 107 : 1337–1344. [CrossRef] [PubMed] [Google Scholar]
  20. Rossini A, Rumio C, Sfondrini L, et al. Influence of antibiotic treatment on breast carcinoma development in proto-neu transgenic mice. Cancer Res 2006 ; 66 : 6219–6224. [CrossRef] [Google Scholar]
  21. Lakritz JR, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 2015 ; 6 : 9387–9396. [CrossRef] [PubMed] [Google Scholar]
  22. Sergentanis TN, Zagouri F, Zografos GC. Is antibiotic use a risk factor for breast cancer?. A meta-analysis. Pharmacoepidemiol. Drug Saf 2010 ; 19 : 1101–1107. [Google Scholar]
  23. Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015 ; 27 : 27–40. [CrossRef] [PubMed] [Google Scholar]
  24. Sistigu A, Viaud S, Chaput N, et al. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 2011 ; 33 : 369–383. [CrossRef] [PubMed] [Google Scholar]
  25. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 ; 342 : 971–976. [CrossRef] [PubMed] [Google Scholar]
  26. Lida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013 ; 342 : 967–970. [CrossRef] [PubMed] [Google Scholar]
  27. Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007 ; 117 : 2197–2204. [CrossRef] [PubMed] [Google Scholar]
  28. Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008 ; 26 : 5233–5239. [CrossRef] [PubMed] [Google Scholar]
  29. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010 ; 363 : 711–723. [CrossRef] [PubMed] [Google Scholar]
  30. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011 ; 364 : 2517–2526. [Google Scholar]
  31. Perkins D, Wang Z, Donovan C, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996 ; 156 : 4154–4159. [PubMed] [Google Scholar]
  32. Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991 ; 174 : 561–569. [CrossRef] [PubMed] [Google Scholar]
  33. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015 ; 350 : 1079–1084. [CrossRef] [PubMed] [Google Scholar]
  34. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015 ; 350 : 1084–1089. [CrossRef] [PubMed] [Google Scholar]
  35. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012 ; 30 : 2691–2697. [CrossRef] [PubMed] [Google Scholar]
  36. Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016 ; 7 : 10391. [Google Scholar]
  37. Li J, Sung CYJ, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 2016 ; 113 : E1306–E1315. [Google Scholar]
  38. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–415. [CrossRef] [PubMed] [Google Scholar]
  39. Youngster I, Russell GH, Pindar C, et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 2014 ; 312 : 1772–1778. [CrossRef] [PubMed] [Google Scholar]
  40. Cammarota G, Masucci L, Ianiro G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther 2015 ; 41 : 835–843. [CrossRef] [PubMed] [Google Scholar]
  41. Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 2016 ; 10.1093/infdis/jiv766 [Google Scholar]
  42. Zhang Y, Limaye PB, Renaud HJ, et al. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol 2014 ; 277 : 138–145. [CrossRef] [PubMed] [Google Scholar]
  43. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014 ; 371 : 2189–2199. [CrossRef] [PubMed] [Google Scholar]
  44. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014 ; 32 : 834–841. [CrossRef] [PubMed] [Google Scholar]
  45. Nielsen HB, Almeida M, Juncker AS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014 ; 32 : 822–828. [CrossRef] [PubMed] [Google Scholar]
  46. Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015 ; 28 : 237–264. [CrossRef] [PubMed] [Google Scholar]
  47. Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015 ; 7 : 271ps1. [CrossRef] [PubMed] [Google Scholar]
  48. Fransen F, Zagato E, Mazzini E, et al. BALB/c and C57BL/6 Mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 2015 ; 43 : 527–540. [CrossRef] [PubMed] [Google Scholar]
  49. Gaboriau-Routhiau V, Cerf-Bensussan N. Microbiote intestinal et développement du système immunitaire. Med Sci (Paris) 2016 ; 32 : 961–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Lagier JC, Raoult D. Greffe de microbiote fécal et infections : mise au point, perspectives. Med Sci (Paris) 2016 ; 32 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Rahmouni O, Dubuquoy L, Desreumaux P, Neut C. Microbiote intestinal et développement des maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2016 ; 32 : 968–973. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Weissenbach J, Sghir A. Microbiotes et Métagénomique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Blottière HM. Joël Doré J. Impact des nouveaux outils de métagénomique sur notre connaissance du microbiote intestinal et de son rôle en santé humaine : enjeux diagnostiques et thérapeutiques. Med Sci (Paris) 2016 ; 32 : 944–951. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Lagier JC, Raoult D. Culturomics : une méthode d’étude du microbiote humain. Med Sci (Paris) 2016 ; 32 : 923–925. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Dodet B. Les enjeux médicaux et sociétaux du microbiote. Med Sci (Paris) 2016 ; 32 : 1003–1008. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.