Free Access
Med Sci (Paris)
Volume 32, Number 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
Page(s) 983 - 990
Section Le microbiote : cet inconnu qui réside en nous
Published online 23 December 2016
  1. Sansonetti PJ. Host-bacteria homeostasis in the healthy and inflamed gut. Curr Opin Gastroenterol 2008 ; 24 : 435–439. [CrossRef] [PubMed] [Google Scholar]
  2. Jakobsson HE, Piñeiro AR. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015 ; 16 : 164–177. [CrossRef] [PubMed] [Google Scholar]
  3. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011 ; 141 : 769–776. [CrossRef] [PubMed] [Google Scholar]
  4. Yamanaka T, Helgeland L, Farstad IN, et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J Immunol 2003 ; 170 : 816–822. [CrossRef] [PubMed] [Google Scholar]
  5. Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010 ; 16 : 228–231. [CrossRef] [PubMed] [Google Scholar]
  6. Khosravi A, Yáñez A, Price JG, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014 ; 15 : 374–381. [CrossRef] [PubMed] [Google Scholar]
  7. Shin SC, Kim SH, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011 ; 334 : 670–674. [CrossRef] [PubMed] [Google Scholar]
  8. Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016 ; 351 : 854–857. [CrossRef] [PubMed] [Google Scholar]
  9. Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011 ; 108 : 3047–3052. [Google Scholar]
  10. Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol 2016 ; 18 : 632–644. [CrossRef] [PubMed] [Google Scholar]
  11. Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev 2010 ; 90 : 859–904. [CrossRef] [PubMed] [Google Scholar]
  12. Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 2016 ; 280 : 339–349. [CrossRef] [Google Scholar]
  13. Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell 2013 ; 154 : 274–284. [CrossRef] [PubMed] [Google Scholar]
  14. Tan DWM, Barker N. Intestinal stem cells and their defining niche. Curr Top Dev Biol 2014 ; 107 : 77–107. [CrossRef] [PubMed] [Google Scholar]
  15. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009 ; 459 : 262–265. [CrossRef] [PubMed] [Google Scholar]
  16. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011 ; 34 : 637–650. [CrossRef] [PubMed] [Google Scholar]
  17. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004 ; 118 : 229–241. [CrossRef] [PubMed] [Google Scholar]
  18. Pull SL, Doherty JM, Mills JC, et al. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005 ; 102 : 99–104. [CrossRef] [Google Scholar]
  19. Nigro G, Rossi R, Commere PH, et al. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 2014 ; 15 : 792–798. [CrossRef] [PubMed] [Google Scholar]
  20. Zanello G, Goethel A, Rouquier S, et al. The cytosolic microbial receptor Nod2 regulates small intestinal crypt damage and epithelial regeneration following T cell-induced enteropathy. J Immunol 2016 ; 197 : 345–355. [CrossRef] [PubMed] [Google Scholar]
  21. Swanson PA, Kumar A, Samarin S, et al. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc Natl Acad Sci USA 2011 ; 108 : 8803–8808. [CrossRef] [Google Scholar]
  22. Alam M, Midtvedt T, Uribe A. Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol 1994 ; 29 : 445–451. [CrossRef] [PubMed] [Google Scholar]
  23. Reikvam DH, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 2011 ; 6 : e17996. [CrossRef] [PubMed] [Google Scholar]
  24. Cheesman SE, Neal JT, Mittge E. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci USA 2011 ; 108 (suppl 1) : 4570–4577. [CrossRef] [Google Scholar]
  25. Bonfini A, Liu X, Buchon N. From pathogens to microbiota: how drosophila intestinal stem cells react to gut microbes. Dev Comp Immunol 2016 ; 64 : 22–38. [CrossRef] [PubMed] [Google Scholar]
  26. Wong CNA, Ng P, Douglas AE. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 2011 ; 13 : 1889–1900. [CrossRef] [PubMed] [Google Scholar]
  27. Micchelli CA, Perrimon N. Evidence that stem cells reside in the adult drosophila midgut epithelium. Nature 2006 ; 439 : 475–479. [CrossRef] [PubMed] [Google Scholar]
  28. Jiang H, Patel PH, Kohlmaier A, et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasisin the drosophila midgut. Cell 2009 ; 137 : 1343–1355. [CrossRef] [PubMed] [Google Scholar]
  29. Buchon N, Broderick NA, Chakrabarti S, et al. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in drosophila. Genes Dev 2009 ; 23 : 2333–2344. [CrossRef] [PubMed] [Google Scholar]
  30. Alam A, Leoni G, Wentworth CC, et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol 2013 ; 7 : 645–655. [CrossRef] [PubMed] [Google Scholar]
  31. Jones RM, Desai C, Darby TM, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Reports 2015 ; 12 : 1217–1225. [CrossRef] [PubMed] [Google Scholar]
  32. Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 2015 ; 528 : 560–564. [CrossRef] [PubMed] [Google Scholar]
  33. Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 2010 ; 26 : 327–331. [CrossRef] [PubMed] [Google Scholar]
  34. Sánchez de Medina F, Romero-Calvo I, Mascaraque C, et al. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 2014 ; 20 : 2394–2404. [CrossRef] [PubMed] [Google Scholar]
  35. Earle KA, Billings G, Sigal M, et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 2015 ; 18 : 478–488. [CrossRef] [PubMed] [Google Scholar]
  36. Pédron T, Sansonetti P. Commensals, bacterial pathogens and intestinal inflammation: an intriguing ménage à trois. Cell Host Microbe 2008 ; 3 : 344–347. [CrossRef] [PubMed] [Google Scholar]
  37. Neal MD, Sodhi CP, Jia H, et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem 2012 ; 287 : 37296–37308. [CrossRef] [PubMed] [Google Scholar]
  38. Ríos-Covián D, Ruas-Madiedo P, Margolles A, et al. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016 ; 7 : 2030. [PubMed] [Google Scholar]
  39. Besten den G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013 ; 54 : 2325–2340. [Google Scholar]
  40. Kaiko GE, Ryu SH, Koues OI, et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016 ; 165 : 1708–1720. [CrossRef] [PubMed] [Google Scholar]
  41. Matsuki T, Pédron T, Regnault B, et al. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve. PLoS One 2013 ; 8 : e63053. [CrossRef] [PubMed] [Google Scholar]
  42. Dutta D, Dobson AJ, Houtz PL, et al. Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult drosophila midgut. Cell Rep 2015 ; 12 : 346–358. [CrossRef] [PubMed] [Google Scholar]
  43. Larsson E, Tremaroli V, Lee YS, et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 2012 ; 61 : 1124–1131. [CrossRef] [PubMed] [Google Scholar]
  44. Alenghat T, Osborne LC, Saenz SA, et al. Histone deacetylase 3 coordinates commensal- bacteria-dependent intestinal homeostasis. Nature 2014 ; 504 : 153–157. [CrossRef] [Google Scholar]
  45. Yu DH, Gadkari M, Zhou Q, et al. Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol 2015 ; 16 : 211. [CrossRef] [PubMed] [Google Scholar]
  46. Burberry A, Zeng MY, Ding L, et al. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host Microbe 2014 ; 15 : 779–791. [CrossRef] [PubMed] [Google Scholar]
  47. Gaboriau-Routhiau V, Cerf-Bensussan N. Microbiote intestinal et développement du système immunitaire. Med Sci (Paris) 2016 ; 32 : 961–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Barbotin AL, Giacobini P, Prévot V. Le microbiote intestinal : clé de voûte entre l’obésité maternelle et les troubles de la socialisation chez la descendance. Med Sci (Paris) 2016 ; 32 : 930–932. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  49. Romagnolo B. Une relation Paneth entre cellules souches et niche intestinale. Med Sci (Paris) 2012 ; 28 : 1058–1060. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Storelli G, Leulier F. Croissance, sous-nutrition et microbiote : l’effet bénéfique de souches de Lactobacilles est conservé de la drosophile à la souris. Med Sci (Paris) 2016 ; 32 : 925–929. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Lamas B, Richard ML, Sokol H. CARD9 et colite : un pont entre dysbiose et immunité. Med Sci (Paris) 2016 ; 32 : 933–936. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Rahmouni O, Dubuquoy L, Desreumaux P, Neut C. Microbiote intestinal et développement des maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2016 ; 32 : 968–973. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Burcelin R, Nicolas S, Blasco-Baque V. Microbiotes et maladies métaboliques : de nouveaux concepts pour de nouvelles stratégies thérapeutiques. Med Sci (Paris) 2016 ; 32 : 952–960. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.