Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 11, Novembre 2016
Le microbiote : cet inconnu qui réside en nous
Page(s) 974 - 982
Section Le microbiote : cet inconnu qui réside en nous
DOI https://doi.org/10.1051/medsci/20163211013
Publié en ligne 23 décembre 2016
  1. Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012 ; 489 : 231–241. [CrossRef] [PubMed] [Google Scholar]
  2. Holzapfel WH, Haberer P, Snel J, et al. Overview of gut flora and probiotics. Int J Food Microbiol 1998 ; 41 : 85–101. [CrossRef] [PubMed] [Google Scholar]
  3. Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 2005 ; 11 : 1131–1140. [CrossRef] [PubMed] [Google Scholar]
  4. Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev 2010 ; 90 : 859–904. [CrossRef] [PubMed] [Google Scholar]
  5. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009 ; 9 : 313–323. [CrossRef] [PubMed] [Google Scholar]
  6. Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008 ; 455 : 808–812. [CrossRef] [PubMed] [Google Scholar]
  7. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009 ; 139 : 485–498. [CrossRef] [PubMed] [Google Scholar]
  8. Round JL, Lee SM, Li J, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011 ; 332 : 974–977. [CrossRef] [PubMed] [Google Scholar]
  9. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013 ; 500 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  10. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013 ; 504 : 446–450. [CrossRef] [PubMed] [Google Scholar]
  11. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013 ; 13 : 800–812. [CrossRef] [PubMed] [Google Scholar]
  12. Wang JL, Chang CH, Lin JW, et al. Infection, antibiotic therapy and risk of colorectal cancer: a nationwide nested case-control study in patients with Type 2 diabetes mellitus. Int J Cancer 2014 ; 135 : 956–967. [CrossRef] [PubMed] [Google Scholar]
  13. Garrett WS, Punit S, Gallini CA, et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 2009 ; 16 : 208–219. [CrossRef] [PubMed] [Google Scholar]
  14. Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 2010 ; 8 : 292–300. [CrossRef] [PubMed] [Google Scholar]
  15. Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012 ; 33 : 1231–1238. [CrossRef] [PubMed] [Google Scholar]
  16. Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell 2014 ; 158 : 288–299. [CrossRef] [PubMed] [Google Scholar]
  17. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013 ; 499 : 97–101. [CrossRef] [PubMed] [Google Scholar]
  18. Dapito DH, Mencin A, Gwak G-Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012 ; 21 : 504–516. [CrossRef] [PubMed] [Google Scholar]
  19. Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 2012 ; 107 : 1337–1344. [CrossRef] [PubMed] [Google Scholar]
  20. Rossini A, Rumio C, Sfondrini L, et al. Influence of antibiotic treatment on breast carcinoma development in proto-neu transgenic mice. Cancer Res 2006 ; 66 : 6219–6224. [CrossRef] [Google Scholar]
  21. Lakritz JR, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 2015 ; 6 : 9387–9396. [CrossRef] [PubMed] [Google Scholar]
  22. Sergentanis TN, Zagouri F, Zografos GC. Is antibiotic use a risk factor for breast cancer?. A meta-analysis. Pharmacoepidemiol. Drug Saf 2010 ; 19 : 1101–1107. [Google Scholar]
  23. Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015 ; 27 : 27–40. [CrossRef] [PubMed] [Google Scholar]
  24. Sistigu A, Viaud S, Chaput N, et al. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol 2011 ; 33 : 369–383. [CrossRef] [PubMed] [Google Scholar]
  25. Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013 ; 342 : 971–976. [CrossRef] [PubMed] [Google Scholar]
  26. Lida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013 ; 342 : 967–970. [CrossRef] [PubMed] [Google Scholar]
  27. Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007 ; 117 : 2197–2204. [CrossRef] [PubMed] [Google Scholar]
  28. Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008 ; 26 : 5233–5239. [CrossRef] [PubMed] [Google Scholar]
  29. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010 ; 363 : 711–723. [CrossRef] [PubMed] [Google Scholar]
  30. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011 ; 364 : 2517–2526. [Google Scholar]
  31. Perkins D, Wang Z, Donovan C, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996 ; 156 : 4154–4159. [PubMed] [Google Scholar]
  32. Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991 ; 174 : 561–569. [CrossRef] [PubMed] [Google Scholar]
  33. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015 ; 350 : 1079–1084. [CrossRef] [PubMed] [Google Scholar]
  34. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015 ; 350 : 1084–1089. [CrossRef] [PubMed] [Google Scholar]
  35. Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012 ; 30 : 2691–2697. [CrossRef] [PubMed] [Google Scholar]
  36. Dubin K, Callahan MK, Ren B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016 ; 7 : 10391. [Google Scholar]
  37. Li J, Sung CYJ, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 2016 ; 113 : E1306–E1315. [Google Scholar]
  38. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013 ; 368 : 407–415. [CrossRef] [PubMed] [Google Scholar]
  39. Youngster I, Russell GH, Pindar C, et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 2014 ; 312 : 1772–1778. [CrossRef] [PubMed] [Google Scholar]
  40. Cammarota G, Masucci L, Ianiro G, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther 2015 ; 41 : 835–843. [CrossRef] [PubMed] [Google Scholar]
  41. Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 2016 ; 10.1093/infdis/jiv766 [Google Scholar]
  42. Zhang Y, Limaye PB, Renaud HJ, et al. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol 2014 ; 277 : 138–145. [CrossRef] [PubMed] [Google Scholar]
  43. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014 ; 371 : 2189–2199. [CrossRef] [PubMed] [Google Scholar]
  44. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014 ; 32 : 834–841. [CrossRef] [PubMed] [Google Scholar]
  45. Nielsen HB, Almeida M, Juncker AS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014 ; 32 : 822–828. [CrossRef] [PubMed] [Google Scholar]
  46. Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015 ; 28 : 237–264. [CrossRef] [PubMed] [Google Scholar]
  47. Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015 ; 7 : 271ps1. [CrossRef] [PubMed] [Google Scholar]
  48. Fransen F, Zagato E, Mazzini E, et al. BALB/c and C57BL/6 Mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 2015 ; 43 : 527–540. [CrossRef] [PubMed] [Google Scholar]
  49. Gaboriau-Routhiau V, Cerf-Bensussan N. Microbiote intestinal et développement du système immunitaire. Med Sci (Paris) 2016 ; 32 : 961–967. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Lagier JC, Raoult D. Greffe de microbiote fécal et infections : mise au point, perspectives. Med Sci (Paris) 2016 ; 32 : 991–997. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  51. Rahmouni O, Dubuquoy L, Desreumaux P, Neut C. Microbiote intestinal et développement des maladies inflammatoires chroniques de l’intestin. Med Sci (Paris) 2016 ; 32 : 968–973. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Weissenbach J, Sghir A. Microbiotes et Métagénomique. Med Sci (Paris) 2016 ; 32 : 937–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Blottière HM. Joël Doré J. Impact des nouveaux outils de métagénomique sur notre connaissance du microbiote intestinal et de son rôle en santé humaine : enjeux diagnostiques et thérapeutiques. Med Sci (Paris) 2016 ; 32 : 944–951. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Lagier JC, Raoult D. Culturomics : une méthode d’étude du microbiote humain. Med Sci (Paris) 2016 ; 32 : 923–925. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Dodet B. Les enjeux médicaux et sociétaux du microbiote. Med Sci (Paris) 2016 ; 32 : 1003–1008. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.