Free Access
Issue |
Med Sci (Paris)
Volume 32, Number 10, Octobre 2016
|
|
---|---|---|
Page(s) | 849 - 860 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163210018 | |
Published online | 19 October 2016 |
- Firth AEBrierley I. Non-canonical translation in RNA viruses. J Gen Virol 2012 ; 93 : 1385–1409. [CrossRef] [PubMed] [Google Scholar]
- Brar GAWeissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 2015 ; 16 : 651–664. [CrossRef] [PubMed] [Google Scholar]
- Stern-Ginossar N. Decoding viral infection by ribosome profiling. J Virol 2015 ; 89 : 6164–6166. [CrossRef] [PubMed] [Google Scholar]
- Ingolia NTGhaemmaghami SNewman JRS, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009 ; 324 : 218–223. [CrossRef] [PubMed] [Google Scholar]
- Sonenberg NHinnebusch AG. Regulation of translation initiation in Eukaryotes: Mechanisms and biological targets. Cell 2009 ; 136 : 731–745. [CrossRef] [PubMed] [Google Scholar]
- Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 2002 ; 299 : 1–34. [CrossRef] [Google Scholar]
- Jackson RJHellen CUTPestova TV. Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 2012 ; 86 : 45–93. [CrossRef] [PubMed] [Google Scholar]
- Gebauer FHentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004 ; 5 : 827–835. [CrossRef] [PubMed] [Google Scholar]
- Morris DR. Ribosomal footprints on a transcriptome landscape. Genome Biol 2009 ; 10 : 215. [CrossRef] [PubMed] [Google Scholar]
- Wolin SLWalter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 1988 ; 7 : 3559–3569. [PubMed] [Google Scholar]
- Ingolia NTBrar GARouskin S, et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 2012 ; 7 : 1534–1550. [CrossRef] [PubMed] [Google Scholar]
- Michel AMBaranov PV. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip Rev RNA 2013 ; 4 : 473–490. [CrossRef] [PubMed] [Google Scholar]
- Ingolia NT, Brar GA, Rouskin S, et al. Genome-wide annotation and quantitation of translation by ribosome profiling. Curr Protoc Mol Biol 2013 ; chapter 4 : Unit-4.18. [Google Scholar]
- Ingolia NTBrar GAStern-Ginossar N, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 2014 ; 8 : 1365–1379. [CrossRef] [PubMed] [Google Scholar]
- Shalgi RHurt JAKrykbaeva I, et al. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 2013 ; 49 : 439–452. [CrossRef] [PubMed] [Google Scholar]
- Gerashchenko MVLobanov AVGladyshev VN. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci USA 2012 ; 109 : 17394–17399. [CrossRef] [Google Scholar]
- Stern-Ginossar NWeisburd BMichalski A, et al. Decoding human cytomegalovirus. Science 2012 ; 338 : 1088–1093. [CrossRef] [PubMed] [Google Scholar]
- Walsh DMohr I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 2011 ; 9 : 860–875. [CrossRef] [PubMed] [Google Scholar]
- Roberts LOJopling CLJackson RJ, et al. Viral strategies to subvert the mammalian translation machinery. Prog Mol Biol Transl Sci 2009 ; 90 : 313–367. [CrossRef] [PubMed] [Google Scholar]
- Walsh DMathews MBMohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013 ; 5 : a012351. [CrossRef] [PubMed] [Google Scholar]
- Ricci EPRifo RSHerbreteau CH, et al. Lentiviral RNAs can use different mechanisms for translation initiation. Biochem Soc Trans 2008 ; 36 : 690–693. [CrossRef] [PubMed] [Google Scholar]
- Lloyd RE. Translational control by viral proteinases. Virus Res 2006 ; 119 : 76–88. [CrossRef] [PubMed] [Google Scholar]
- Rutkowski AJErhard FL’Hernault A, et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun 2015 ; 6 : 7126. [CrossRef] [PubMed] [Google Scholar]
- Irigoyen NFirth AEJones JD, et al. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 2016 ; 12 : e1005473. [CrossRef] [PubMed] [Google Scholar]
- Stacey SNJordan DWilliamson AJK, et al. Leaky scanning is the predominant mechanism for translation of Human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol 2000 ; 74 : 7284–7297. [CrossRef] [PubMed] [Google Scholar]
- Ingolia NTLareau LFWeissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity of mammalian proteomes. Cell 2011 ; 147 : 789–802. [CrossRef] [PubMed] [Google Scholar]
- Corbin APrats ACDarlix JL, et al. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J Virol 1994 ; 68 : 3857–3867. [PubMed] [Google Scholar]
- Prats ACDe Billy GWang P, et al. CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol 1989 ; 205 : 363–372. [CrossRef] [PubMed] [Google Scholar]
- Yang ZCao SMartens CA, et al. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 2015 ; 89 : 6874–6886. [CrossRef] [PubMed] [Google Scholar]
- Bolinger CBoris-Lawrie K. Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009 ; 6 : 8. [CrossRef] [PubMed] [Google Scholar]
- Finch LKLing RNapthine S, et al. Characterization of ribosomal frameshifting in Theiler’s murine encephalomyelitis virus. J Virol 2015 ; 89 : 8580–8589. [CrossRef] [PubMed] [Google Scholar]
- Guerrero SBatisse JLibre C, et al. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015 ; 7 : 199–218. [CrossRef] [PubMed] [Google Scholar]
- Somogyi PJenner AJBrierley I, et al. Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 1993 ; 13 : 6931–6940. [CrossRef] [PubMed] [Google Scholar]
- Dunn JG, Foo CK, Belletier NG, et al. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2013 ; 2 : e01179. [PubMed] [Google Scholar]
- Miettinen TPBjörklund M. Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3' untranslated regions. Nucleic Acids Res 2015 ; 43 : 1019–1034. [CrossRef] [PubMed] [Google Scholar]
- Murphy ERigoutsos IShibuya T, et al. Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci USA 2003 ; 100 : 13585–13590. [CrossRef] [Google Scholar]
- Guttman MRussell PIngolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 2013 ; 154 : 240–251. [CrossRef] [PubMed] [Google Scholar]
- Sanz EYang LSu T, et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA 2009 ; 106 : 13939–13944. [CrossRef] [Google Scholar]
- Hussmann JAPatchett SJohnson A, et al. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet 2015 ; 11 : e1005732. [CrossRef] [PubMed] [Google Scholar]
- Gerashchenko MVGladyshev VN. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res 2014 ; 42 : e134. [CrossRef] [PubMed] [Google Scholar]
- Cenik CCenik ESByeon GW, et al. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res 2015 ; 25 : 1610–1621. [CrossRef] [PubMed] [Google Scholar]
- Piccirillo CABjur ETopisirovic I, et al. Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014 ; 15 : 503–511. [CrossRef] [PubMed] [Google Scholar]
- Marcel VCatez FMertani HCDiaz JJ. Le ribosome. Med Sci (Paris) 2014 ; 30 : 21–24. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.