Free Access
Med Sci (Paris)
Volume 32, Number 10, Octobre 2016
Page(s) 843 - 848
Section M/S Revues
Published online 19 October 2016
  1. Cai L, Tu BP. Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 2012 ; 28 : 59–87. [CrossRef] [PubMed] [Google Scholar]
  2. Magnan D, Bates D. Regulation of DNA replication initiation by chromosome structure. J Bacteriol 2015 ; 197 : 3370–3377. [CrossRef] [PubMed] [Google Scholar]
  3. Chiaramello AE, Zyskind JW. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 1990 ; 172 : 2013–2019. [CrossRef] [PubMed] [Google Scholar]
  4. Artsimovitch I, Patlan V, Sekine S, et al. Structural basis for transcription regulation by alarmone ppGpp. Cell 2004 ; 117 : 299–310. [CrossRef] [PubMed] [Google Scholar]
  5. Ross W, Vrentas CE, Sanchez-Vazquez P, et al. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 2013 ; 50 : 420–429. [CrossRef] [PubMed] [Google Scholar]
  6. Zuo Y, Wang Y, Steitz TA. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 2013 ; 50 : 430–436. [CrossRef] [PubMed] [Google Scholar]
  7. Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011 ; 80 : 695–714. [CrossRef] [PubMed] [Google Scholar]
  8. Lesley JA, Shapiro L. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 2008 ; 190 : 6867–6880. [CrossRef] [PubMed] [Google Scholar]
  9. Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016 ; 7 : 11423. [CrossRef] [PubMed] [Google Scholar]
  10. Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 2005 ; 55 : 1233–1245. [CrossRef] [PubMed] [Google Scholar]
  11. Leslie DJ, Heinen C, Schramm FD, et al. Nutritional control of DNA replication initiation through the proteolysis and regulated translation of DnaA. PLoS Genet 2015 ; 11 : e1005342. [CrossRef] [PubMed] [Google Scholar]
  12. Wang JD, Sanders GM, Grossman AD. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 2007 ; 128 : 865–875. [CrossRef] [PubMed] [Google Scholar]
  13. Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet 2008 ; 4 : e1000300. [CrossRef] [PubMed] [Google Scholar]
  14. Narayanan S, Janakiraman B, Kumar L, Radhakrishnan SK. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 2015 ; 29 : 1175–1187. [CrossRef] [PubMed] [Google Scholar]
  15. Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 1968 ; 31 : 519–540. [CrossRef] [PubMed] [Google Scholar]
  16. Donachie WD, Begg KJ. Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J Bacteriol 1989 ; 171 : 4633–4639. [CrossRef] [PubMed] [Google Scholar]
  17. Sargent MG. Control of cell length in Bacillus subtilis. J Bacteriol 1975 ; 123 : 7–19. [PubMed] [Google Scholar]
  18. Schaechter M, Maaloe O, Kjeldgaard NO. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 1958 ; 19 : 592–606. [CrossRef] [PubMed] [Google Scholar]
  19. Weart RB, Lee AH, Chien AC, et al. A metabolic sensor governing cell size in bacteria. Cell 2007 ; 130 : 335–347. [CrossRef] [PubMed] [Google Scholar]
  20. Errington J, Daniel RA, Scheffers DJ. Cytokinesis in bacteria. Microbiol Mol Biol Rev 2003 ; 67 : 52–65. [CrossRef] [PubMed] [Google Scholar]
  21. Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 2005 ; 6 : 862–871. [CrossRef] [PubMed] [Google Scholar]
  22. Erickson HP, Anderson DE, Osawa M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 2010 ; 74 : 504–528. [CrossRef] [PubMed] [Google Scholar]
  23. Chien AC, Zareh SK, Wang YM, Levin PA. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 2012 ; 86 : 594–610. [CrossRef] [PubMed] [Google Scholar]
  24. Hill NS, Buske PJ, Shi Y, Levin PA. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 2013 ; 9 : e1003663. [CrossRef] [PubMed] [Google Scholar]
  25. Monahan LG, Hajduk IV, Blaber SP, et al. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio 2014 ; 5 : e00935–e00914. [CrossRef] [PubMed] [Google Scholar]
  26. Campos M, Surovtsev IV, Kato S, et al. A constant size extension drives bacterial cell size homeostasis. Cell 2014 ; 159 : 1433–1446. [CrossRef] [PubMed] [Google Scholar]
  27. Beaufay F, Coppine J, Mayard A, et al. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 2015 ; 34 : 1786–1800. [CrossRef] [PubMed] [Google Scholar]
  28. Radhakrishnan SK, Pritchard S, Viollier PH. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 2010 ; 18 : 90–101. [CrossRef] [PubMed] [Google Scholar]
  29. Beaufay F, De Bolle X, Hallez R. Metabolic control of cell division in alpha-proteobacteria by a NAD-dependent glutamate dehydrogenase. Commun Integr Biol 2016 ; 9 : e1125052. [CrossRef] [PubMed] [Google Scholar]
  30. Huberts DH, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 2010 ; 1803 : 520–525. [CrossRef] [PubMed] [Google Scholar]
  31. Dorée M. Le déclenchement de la mitose chez les eucaryotes supérieurs. Med Sci (Paris) 2003 ; 19 : 299–307. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.