Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 10, Octobre 2016
Page(s) 843 - 848
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163210017
Publié en ligne 19 octobre 2016
  1. Cai L, Tu BP. Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 2012 ; 28 : 59–87. [CrossRef] [PubMed]
  2. Magnan D, Bates D. Regulation of DNA replication initiation by chromosome structure. J Bacteriol 2015 ; 197 : 3370–3377. [CrossRef] [PubMed]
  3. Chiaramello AE, Zyskind JW. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 1990 ; 172 : 2013–2019. [CrossRef] [PubMed]
  4. Artsimovitch I, Patlan V, Sekine S, et al. Structural basis for transcription regulation by alarmone ppGpp. Cell 2004 ; 117 : 299–310. [CrossRef]
  5. Ross W, Vrentas CE, Sanchez-Vazquez P, et al. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 2013 ; 50 : 420–429. [CrossRef] [PubMed]
  6. Zuo Y, Wang Y, Steitz TA. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. Mol Cell 2013 ; 50 : 430–436. [CrossRef] [PubMed]
  7. Boutte CC, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 2011 ; 80 : 695–714. [CrossRef] [PubMed]
  8. Lesley JA, Shapiro L. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 2008 ; 190 : 6867–6880. [CrossRef] [PubMed]
  9. Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016 ; 7 : 11423. [CrossRef]
  10. Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 2005 ; 55 : 1233–1245. [CrossRef] [PubMed]
  11. Leslie DJ, Heinen C, Schramm FD, et al. Nutritional control of DNA replication initiation through the proteolysis and regulated translation of DnaA. PLoS Genet 2015 ; 11 : e1005342. [CrossRef] [PubMed]
  12. Wang JD, Sanders GM, Grossman AD. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 2007 ; 128 : 865–875. [CrossRef]
  13. Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet 2008 ; 4 : e1000300. [CrossRef] [PubMed]
  14. Narayanan S, Janakiraman B, Kumar L, Radhakrishnan SK. A cell cycle-controlled redox switch regulates the topoisomerase IV activity. Genes Dev 2015 ; 29 : 1175–1187. [CrossRef] [PubMed]
  15. Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol 1968 ; 31 : 519–540. [CrossRef] [PubMed]
  16. Donachie WD, Begg KJ. Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J Bacteriol 1989 ; 171 : 4633–4639. [CrossRef] [PubMed]
  17. Sargent MG. Control of cell length in Bacillus subtilis. J Bacteriol 1975 ; 123 : 7–19. [PubMed]
  18. Schaechter M, Maaloe O, Kjeldgaard NO. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 1958 ; 19 : 592–606. [CrossRef] [PubMed]
  19. Weart RB, Lee AH, Chien AC, et al. A metabolic sensor governing cell size in bacteria. Cell 2007 ; 130 : 335–347. [CrossRef]
  20. Errington J, Daniel RA, Scheffers DJ. Cytokinesis in bacteria. Microbiol Mol Biol Rev 2003 ; 67 : 52–65. [CrossRef] [PubMed]
  21. Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 2005 ; 6 : 862–871. [CrossRef] [PubMed]
  22. Erickson HP, Anderson DE, Osawa M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 2010 ; 74 : 504–528. [CrossRef] [PubMed]
  23. Chien AC, Zareh SK, Wang YM, Levin PA. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability. Mol Microbiol 2012 ; 86 : 594–610. [CrossRef] [PubMed]
  24. Hill NS, Buske PJ, Shi Y, Levin PA. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 2013 ; 9 : e1003663. [CrossRef] [PubMed]
  25. Monahan LG, Hajduk IV, Blaber SP, et al. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio 2014 ; 5 : e00935–e00914. [CrossRef] [PubMed]
  26. Campos M, Surovtsev IV, Kato S, et al. A constant size extension drives bacterial cell size homeostasis. Cell 2014 ; 159 : 1433–1446. [CrossRef]
  27. Beaufay F, Coppine J, Mayard A, et al. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. EMBO J 2015 ; 34 : 1786–1800. [CrossRef] [PubMed]
  28. Radhakrishnan SK, Pritchard S, Viollier PH. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 2010 ; 18 : 90–101. [CrossRef] [PubMed]
  29. Beaufay F, De Bolle X, Hallez R. Metabolic control of cell division in alpha-proteobacteria by a NAD-dependent glutamate dehydrogenase. Commun Integr Biol 2016 ; 9 : e1125052. [CrossRef] [PubMed]
  30. Huberts DH, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 2010 ; 1803 : 520–525. [CrossRef] [PubMed]
  31. Dorée M. Le déclenchement de la mitose chez les eucaryotes supérieurs. Med Sci (Paris) 2003 ; 19 : 299–307. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.