Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 10, Octobre 2016
Page(s) 849 - 860
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163210018
Publié en ligne 19 octobre 2016
  1. Firth AEBrierley I. Non-canonical translation in RNA viruses. J Gen Virol 2012 ; 93 : 1385–1409. [CrossRef] [PubMed]
  2. Brar GAWeissman JS. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 2015 ; 16 : 651–664. [CrossRef] [PubMed]
  3. Stern-Ginossar N. Decoding viral infection by ribosome profiling. J Virol 2015 ; 89 : 6164–6166. [CrossRef] [PubMed]
  4. Ingolia NTGhaemmaghami SNewman JRS, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009 ; 324 : 218–223. [CrossRef] [PubMed]
  5. Sonenberg NHinnebusch AG. Regulation of translation initiation in Eukaryotes: Mechanisms and biological targets. Cell 2009 ; 136 : 731–745. [CrossRef]
  6. Kozak M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 2002 ; 299 : 1–34. [CrossRef]
  7. Jackson RJHellen CUTPestova TV. Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 2012 ; 86 : 45–93. [CrossRef] [PubMed]
  8. Gebauer FHentze MW. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 2004 ; 5 : 827–835. [CrossRef] [PubMed]
  9. Morris DR. Ribosomal footprints on a transcriptome landscape. Genome Biol 2009 ; 10 : 215. [CrossRef] [PubMed]
  10. Wolin SLWalter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 1988 ; 7 : 3559–3569. [PubMed]
  11. Ingolia NTBrar GARouskin S, et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 2012 ; 7 : 1534–1550. [CrossRef] [PubMed]
  12. Michel AMBaranov PV. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. Wiley Interdiscip Rev RNA 2013 ; 4 : 473–490. [CrossRef] [PubMed]
  13. Ingolia NT, Brar GA, Rouskin S, et al. Genome-wide annotation and quantitation of translation by ribosome profiling. Curr Protoc Mol Biol 2013 ; chapter 4 : Unit-4.18.
  14. Ingolia NTBrar GAStern-Ginossar N, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 2014 ; 8 : 1365–1379. [CrossRef] [PubMed]
  15. Shalgi RHurt JAKrykbaeva I, et al. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 2013 ; 49 : 439–452. [CrossRef] [PubMed]
  16. Gerashchenko MVLobanov AVGladyshev VN. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci USA 2012 ; 109 : 17394–17399. [CrossRef]
  17. Stern-Ginossar NWeisburd BMichalski A, et al. Decoding human cytomegalovirus. Science 2012 ; 338 : 1088–1093. [CrossRef] [PubMed]
  18. Walsh DMohr I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 2011 ; 9 : 860–875. [CrossRef] [PubMed]
  19. Roberts LOJopling CLJackson RJ, et al. Viral strategies to subvert the mammalian translation machinery. Prog Mol Biol Transl Sci 2009 ; 90 : 313–367. [CrossRef] [PubMed]
  20. Walsh DMathews MBMohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013 ; 5 : a012351. [CrossRef]
  21. Ricci EPRifo RSHerbreteau CH, et al. Lentiviral RNAs can use different mechanisms for translation initiation. Biochem Soc Trans 2008 ; 36 : 690–693. [CrossRef] [PubMed]
  22. Lloyd RE. Translational control by viral proteinases. Virus Res 2006 ; 119 : 76–88. [CrossRef] [PubMed]
  23. Rutkowski AJErhard FL’Hernault A, et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun 2015 ; 6 : 7126. [CrossRef]
  24. Irigoyen NFirth AEJones JD, et al. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 2016 ; 12 : e1005473. [CrossRef] [PubMed]
  25. Stacey SNJordan DWilliamson AJK, et al. Leaky scanning is the predominant mechanism for translation of Human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol 2000 ; 74 : 7284–7297. [CrossRef] [PubMed]
  26. Ingolia NTLareau LFWeissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity of mammalian proteomes. Cell 2011 ; 147 : 789–802. [CrossRef]
  27. Corbin APrats ACDarlix JL, et al. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J Virol 1994 ; 68 : 3857–3867. [PubMed]
  28. Prats ACDe Billy GWang P, et al. CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol 1989 ; 205 : 363–372. [CrossRef] [PubMed]
  29. Yang ZCao SMartens CA, et al. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 2015 ; 89 : 6874–6886. [CrossRef] [PubMed]
  30. Bolinger CBoris-Lawrie K. Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009 ; 6 : 8. [CrossRef] [PubMed]
  31. Finch LKLing RNapthine S, et al. Characterization of ribosomal frameshifting in Theiler’s murine encephalomyelitis virus. J Virol 2015 ; 89 : 8580–8589. [CrossRef] [PubMed]
  32. Guerrero SBatisse JLibre C, et al. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015 ; 7 : 199–218. [CrossRef] [PubMed]
  33. Somogyi PJenner AJBrierley I, et al. Ribosomal pausing during translation of an RNA pseudoknot. Mol Cell Biol 1993 ; 13 : 6931–6940. [CrossRef] [PubMed]
  34. Dunn JG, Foo CK, Belletier NG, et al. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2013 ; 2 : e01179. [PubMed]
  35. Miettinen TPBjörklund M. Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3' untranslated regions. Nucleic Acids Res 2015 ; 43 : 1019–1034. [CrossRef] [PubMed]
  36. Murphy ERigoutsos IShibuya T, et al. Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci USA 2003 ; 100 : 13585–13590. [CrossRef]
  37. Guttman MRussell PIngolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 2013 ; 154 : 240–251. [CrossRef]
  38. Sanz EYang LSu T, et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA 2009 ; 106 : 13939–13944. [CrossRef]
  39. Hussmann JAPatchett SJohnson A, et al. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet 2015 ; 11 : e1005732. [CrossRef] [PubMed]
  40. Gerashchenko MVGladyshev VN. Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res 2014 ; 42 : e134. [CrossRef] [PubMed]
  41. Cenik CCenik ESByeon GW, et al. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res 2015 ; 25 : 1610–1621. [CrossRef] [PubMed]
  42. Piccirillo CABjur ETopisirovic I, et al. Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014 ; 15 : 503–511. [CrossRef] [PubMed]
  43. Marcel VCatez FMertani HCDiaz JJ. Le ribosome. Med Sci (Paris) 2014 ; 30 : 21–24.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.