Free Access
Issue
Med Sci (Paris)
Volume 32, Number 5, Mai 2016
Page(s) 491 - 496
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163205016
Published online 25 May 2016
  1. Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol 2006 ; 574 : 7–15. [CrossRef] [PubMed] [Google Scholar]
  2. Hurtado de Llera A, Martin-Hidalgo D, Rodriguez-Gil JE, et al. AMP-activated kinase, AMPK, is involved in the maintenance of plasma membrane organization in boar spermatozoa. Biochim Biophys Acta 2013 ; 1828 : 2143–2151. [CrossRef] [PubMed] [Google Scholar]
  3. Cordova A, Strobel P, Vallejo A, et al. Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5’ AMP-activated protein kinase (AMPK). Cryobiology 2014 ; 69 : 473–481. [CrossRef] [PubMed] [Google Scholar]
  4. Nguyen TMD, Alves S, Grasseau I, et al. Central role of 5’-AMP-activated protein kinase in chicken sperm functions. Biol Reprod 2014 ; 91 : 121. [CrossRef] [PubMed] [Google Scholar]
  5. Hardie DG. The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003 ; 144 : 5179–5183. [CrossRef] [PubMed] [Google Scholar]
  6. Wong KA, Lodish HF. A revised model for AMP-activated protein kinase structure: the alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. J Biol Chem 2006 ; 281 : 36434–36442. [CrossRef] [PubMed] [Google Scholar]
  7. Hardie DG, Scott JW, Pan DA, et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 2003 ; 546 : 113–120. [CrossRef] [PubMed] [Google Scholar]
  8. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996 ; 271 : 611–614. [CrossRef] [PubMed] [Google Scholar]
  9. Scott JW, Hawley SA, Green KA, et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 2004 ; 113 : 274–284. [CrossRef] [PubMed] [Google Scholar]
  10. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007 ; 100 : 328–341. [CrossRef] [PubMed] [Google Scholar]
  11. Carling D, Sanders MJ, Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 2008 ; 32 : S55–S59. [CrossRef] [Google Scholar]
  12. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004 ; 428 : 569–574. [CrossRef] [PubMed] [Google Scholar]
  13. Carattino MD, Edinger RS, Grieser HJ, et al. Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 2005 ; 280 : 17608–17616. [CrossRef] [PubMed] [Google Scholar]
  14. Tosca L, Froment P, Solnais P, et al. Adenosine 5’-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 2005 ; 146 : 4500–4513. [CrossRef] [PubMed] [Google Scholar]
  15. Tosca L, Crochet S, Ferre P, et al. AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles. J Endocrinol 2006 ; 190 : 85–97. [CrossRef] [PubMed] [Google Scholar]
  16. Tosca L, Chabrolle C, Uzbekova S, et al. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5’ monophosphate-activated protein kinase (AMPK). Biol Reprod 2007 ; 76 : 368–378. [CrossRef] [PubMed] [Google Scholar]
  17. Stricker SA, Swiderek L, Nguyen T. Stimulators of AMP-activated kinase (AMPK) inhibit seawater- but not cAMP-induced oocyte maturation in a marine worm: implications for interactions between cAMP and AMPK signaling. Mol Reprod Dev 2010 ; 77 : 497–510. [CrossRef] [PubMed] [Google Scholar]
  18. Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 2000 ; 346 : 659–669. [CrossRef] [PubMed] [Google Scholar]
  19. Galardo MN, Riera MF, Pellizzari EH, et al. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 2007 ; 39 : 279–288. [CrossRef] [PubMed] [Google Scholar]
  20. Tanwar PS, Kaneko-Tarui T, Zhang L, et al. Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis. Hum Mol Genet 2012 ; 21 : 4394–4405. [CrossRef] [PubMed] [Google Scholar]
  21. Tartarin P, Guibert E, Toure A, et al. Inactivation of AMPKalpha1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology 2012 ; 153 : 3468–3481. [CrossRef] [PubMed] [Google Scholar]
  22. Hurtado de Llera A, Martin-Hidalgo D, Gil MC, et al. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PLoS One 2012 ; 7 : e38840. [CrossRef] [PubMed] [Google Scholar]
  23. Bertoldo MJ, Guibert E, Tartarin P, et al. Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology 2014 ; 68 : 262–268. [CrossRef] [PubMed] [Google Scholar]
  24. Duan P, Hu C, Quan C, et al. 4-Nonylphenol induces apoptosis, autophagy and necrosis in Sertoli cells: involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways. Toxicology 2016 ; S0300–483X : 30004-X. [Google Scholar]
  25. Guevelou E, Huvet A, Galindo-Sanchez CE, et al. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster Crassostrea gigas. Biol Reprod 2013 ; 89 : 100. [CrossRef] [PubMed] [Google Scholar]
  26. Caroppo E. Male reproductive medicine: anatomy and physiology. In : Niederberger I, Craig S. eds. An introduction to male reproductive medicine. New York : Cambridge University Press, 2011 : 1–28. [CrossRef] [Google Scholar]
  27. Rato L, Alves MG, Socorro S, et al. Metabolic regulation is important for spermatogenesis. Nat Rev Urol 2012 ; 9 : 330–338. [CrossRef] [PubMed] [Google Scholar]
  28. Alves MG, Rato L, Carvalho RA, et al. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 2013 ; 70 : 777–793. [CrossRef] [PubMed] [Google Scholar]
  29. Towler MC, Fogarty S, Hawley SA, et al. A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem J 2008 ; 416 : 1–14. [CrossRef] [PubMed] [Google Scholar]
  30. Tosca L, Chabrolle C, Dupont J. L’AMPK : un lien entre métabolisme et reproduction ? Med Sci (Paris) 2008 ; 24 : 297–300. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Xu B, Hao Z, Jha KN, et al. Validation of a testis specific serine/threonine kinase [TSSK] family and the substrate of TSSK1 and 2, TSKS, as contraceptive targets. Soc Reprod Fertil 2007 ; 63 (suppl) : 87–101. [Google Scholar]
  32. Zhang Z, Kostetskii I, Tang W, et al. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 2006 ; 74 : 751–759. [CrossRef] [PubMed] [Google Scholar]
  33. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004 ; 71 : 540–547. [CrossRef] [PubMed] [Google Scholar]
  34. Takei GL, Miyashiro D, Mukai C, et al. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J Exp Biol 2014 ; 217 : 1876–1886. [CrossRef] [PubMed] [Google Scholar]
  35. Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucoseinduced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 2007 ; 27 : 2627–2633. [CrossRef] [PubMed] [Google Scholar]
  36. Chang CC, Chang CY, Wu YT, et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 2011 ; 18 : 47. [CrossRef] [PubMed] [Google Scholar]
  37. Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012 ; 122 : 253–270. [CrossRef] [PubMed] [Google Scholar]
  38. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012 ; 485 : 661–665. [CrossRef] [PubMed] [Google Scholar]
  39. Fang X, Xu QY, Jia C, et al. Metformin improves epididymal sperm quality and antioxidant function of the testis in diet-induced obesity rats. Zhonghua Nan Ke Xue 2012 ; 18 : 146–149. [PubMed] [Google Scholar]
  40. Nasrolahi O, Khaneshi F, Rahmani F, et al. Honey and metformin ameliorated diabetes-induced damages in testes of rat; correlation with hormonal changes. Iran J Reprod Med 2013 ; 11 : 1013–1020. [PubMed] [Google Scholar]
  41. Nguyen TMD, Seigneurin F, Froment P, et al. The 5’-AMP-activated protein kinase (AMPK) is involved in the augmentation of antioxidant defenses in cryopreserved chicken sperm. PLoS One 2015 ; 10 : e0134420. [CrossRef] [PubMed] [Google Scholar]
  42. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009 ; 458 : 1056–1060. [CrossRef] [PubMed] [Google Scholar]
  43. Aquilano K, Vigilanza P, Baldelli S, et al. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 2010 ; 285 : 21590–21599. [CrossRef] [PubMed] [Google Scholar]
  44. Williams AC, Ford WC. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod 2004 ; 71 : 1309–1316. [CrossRef] [PubMed] [Google Scholar]
  45. Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res Int 2014 ; 2014 : 902953. [CrossRef] [PubMed] [Google Scholar]
  46. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006 ; 116 : 1776–1783. [CrossRef] [PubMed] [Google Scholar]
  47. De Reviers M., Sauveur B. Appareil génital mâle et production de spermatozoïdes. Reproduction des volailles et production d’œufs. Paris : Éditions Inra, 1988 : 141–180. [Google Scholar]
  48. Nguyen TM, Alves S, Grasseau I, et al. Central role of 5’-AMP-activated protein kinase in chicken sperm functions. Biol Reprod 2014 ; 91 : 121. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.