Accès gratuit
Med Sci (Paris)
Volume 32, Numéro 5, Mai 2016
Page(s) 491 - 496
Section M/S Revues
Publié en ligne 25 mai 2016
  1. Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol 2006 ; 574 : 7–15. [CrossRef] [PubMed]
  2. Hurtado de Llera A, Martin-Hidalgo D, Rodriguez-Gil JE, et al. AMP-activated kinase, AMPK, is involved in the maintenance of plasma membrane organization in boar spermatozoa. Biochim Biophys Acta 2013 ; 1828 : 2143–2151. [CrossRef] [PubMed]
  3. Cordova A, Strobel P, Vallejo A, et al. Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5’ AMP-activated protein kinase (AMPK). Cryobiology 2014 ; 69 : 473–481. [CrossRef] [PubMed]
  4. Nguyen TMD, Alves S, Grasseau I, et al. Central role of 5’-AMP-activated protein kinase in chicken sperm functions. Biol Reprod 2014 ; 91 : 121. [CrossRef] [PubMed]
  5. Hardie DG. The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003 ; 144 : 5179–5183. [CrossRef] [PubMed]
  6. Wong KA, Lodish HF. A revised model for AMP-activated protein kinase structure: the alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. J Biol Chem 2006 ; 281 : 36434–36442. [CrossRef] [PubMed]
  7. Hardie DG, Scott JW, Pan DA, et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 2003 ; 546 : 113–120. [CrossRef] [PubMed]
  8. Stapleton D, Mitchelhill KI, Gao G, et al. Mammalian AMP-activated protein kinase subfamily. J Biol Chem 1996 ; 271 : 611–614. [CrossRef] [PubMed]
  9. Scott JW, Hawley SA, Green KA, et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 2004 ; 113 : 274–284. [CrossRef] [PubMed]
  10. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007 ; 100 : 328–341. [CrossRef] [PubMed]
  11. Carling D, Sanders MJ, Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 2008 ; 32 : S55–S59. [CrossRef]
  12. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004 ; 428 : 569–574. [CrossRef] [PubMed]
  13. Carattino MD, Edinger RS, Grieser HJ, et al. Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 2005 ; 280 : 17608–17616. [CrossRef] [PubMed]
  14. Tosca L, Froment P, Solnais P, et al. Adenosine 5’-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 2005 ; 146 : 4500–4513. [CrossRef] [PubMed]
  15. Tosca L, Crochet S, Ferre P, et al. AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles. J Endocrinol 2006 ; 190 : 85–97. [CrossRef] [PubMed]
  16. Tosca L, Chabrolle C, Uzbekova S, et al. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5’ monophosphate-activated protein kinase (AMPK). Biol Reprod 2007 ; 76 : 368–378. [CrossRef] [PubMed]
  17. Stricker SA, Swiderek L, Nguyen T. Stimulators of AMP-activated kinase (AMPK) inhibit seawater- but not cAMP-induced oocyte maturation in a marine worm: implications for interactions between cAMP and AMPK signaling. Mol Reprod Dev 2010 ; 77 : 497–510. [CrossRef] [PubMed]
  18. Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 2000 ; 346 : 659–669. [CrossRef] [PubMed]
  19. Galardo MN, Riera MF, Pellizzari EH, et al. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 2007 ; 39 : 279–288. [CrossRef] [PubMed]
  20. Tanwar PS, Kaneko-Tarui T, Zhang L, et al. Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis. Hum Mol Genet 2012 ; 21 : 4394–4405. [CrossRef] [PubMed]
  21. Tartarin P, Guibert E, Toure A, et al. Inactivation of AMPKalpha1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology 2012 ; 153 : 3468–3481. [CrossRef] [PubMed]
  22. Hurtado de Llera A, Martin-Hidalgo D, Gil MC, et al. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PLoS One 2012 ; 7 : e38840. [CrossRef] [PubMed]
  23. Bertoldo MJ, Guibert E, Tartarin P, et al. Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology 2014 ; 68 : 262–268. [CrossRef] [PubMed]
  24. Duan P, Hu C, Quan C, et al. 4-Nonylphenol induces apoptosis, autophagy and necrosis in Sertoli cells: involvement of ROS-mediated AMPK/AKT-mTOR and JNK pathways. Toxicology 2016 ; S0300–483X : 30004-X.
  25. Guevelou E, Huvet A, Galindo-Sanchez CE, et al. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster Crassostrea gigas. Biol Reprod 2013 ; 89 : 100. [CrossRef] [PubMed]
  26. Caroppo E. Male reproductive medicine: anatomy and physiology. In : Niederberger I, Craig S. eds. An introduction to male reproductive medicine. New York : Cambridge University Press, 2011 : 1–28. [CrossRef]
  27. Rato L, Alves MG, Socorro S, et al. Metabolic regulation is important for spermatogenesis. Nat Rev Urol 2012 ; 9 : 330–338. [CrossRef] [PubMed]
  28. Alves MG, Rato L, Carvalho RA, et al. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 2013 ; 70 : 777–793. [CrossRef] [PubMed]
  29. Towler MC, Fogarty S, Hawley SA, et al. A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem J 2008 ; 416 : 1–14. [CrossRef] [PubMed]
  30. Tosca L, Chabrolle C, Dupont J. L’AMPK : un lien entre métabolisme et reproduction ? Med Sci (Paris) 2008 ; 24 : 297–300. [CrossRef] [EDP Sciences] [PubMed]
  31. Xu B, Hao Z, Jha KN, et al. Validation of a testis specific serine/threonine kinase [TSSK] family and the substrate of TSSK1 and 2, TSKS, as contraceptive targets. Soc Reprod Fertil 2007 ; 63 (suppl) : 87–101.
  32. Zhang Z, Kostetskii I, Tang W, et al. Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 2006 ; 74 : 751–759. [CrossRef] [PubMed]
  33. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004 ; 71 : 540–547. [CrossRef] [PubMed]
  34. Takei GL, Miyashiro D, Mukai C, et al. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J Exp Biol 2014 ; 217 : 1876–1886. [CrossRef] [PubMed]
  35. Ceolotto G, Gallo A, Papparella I, et al. Rosiglitazone reduces glucoseinduced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 2007 ; 27 : 2627–2633. [CrossRef] [PubMed]
  36. Chang CC, Chang CY, Wu YT, et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci 2011 ; 18 : 47. [CrossRef] [PubMed]
  37. Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012 ; 122 : 253–270. [CrossRef] [PubMed]
  38. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012 ; 485 : 661–665. [CrossRef] [PubMed]
  39. Fang X, Xu QY, Jia C, et al. Metformin improves epididymal sperm quality and antioxidant function of the testis in diet-induced obesity rats. Zhonghua Nan Ke Xue 2012 ; 18 : 146–149. [PubMed]
  40. Nasrolahi O, Khaneshi F, Rahmani F, et al. Honey and metformin ameliorated diabetes-induced damages in testes of rat; correlation with hormonal changes. Iran J Reprod Med 2013 ; 11 : 1013–1020. [PubMed]
  41. Nguyen TMD, Seigneurin F, Froment P, et al. The 5’-AMP-activated protein kinase (AMPK) is involved in the augmentation of antioxidant defenses in cryopreserved chicken sperm. PLoS One 2015 ; 10 : e0134420. [CrossRef] [PubMed]
  42. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009 ; 458 : 1056–1060. [CrossRef] [PubMed]
  43. Aquilano K, Vigilanza P, Baldelli S, et al. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 2010 ; 285 : 21590–21599. [CrossRef] [PubMed]
  44. Williams AC, Ford WC. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod 2004 ; 71 : 1309–1316. [CrossRef] [PubMed]
  45. Ferramosca A, Zara V. Bioenergetics of mammalian sperm capacitation. Biomed Res Int 2014 ; 2014 : 902953. [CrossRef] [PubMed]
  46. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006 ; 116 : 1776–1783. [CrossRef] [PubMed]
  47. De Reviers M., Sauveur B. Appareil génital mâle et production de spermatozoïdes. Reproduction des volailles et production d’œufs. Paris : Éditions Inra, 1988 : 141–180.
  48. Nguyen TM, Alves S, Grasseau I, et al. Central role of 5’-AMP-activated protein kinase in chicken sperm functions. Biol Reprod 2014 ; 91 : 121. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.