Free Access
Issue
Med Sci (Paris)
Volume 32, Number 5, Mai 2016
Page(s) 485 - 490
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163205015
Published online 25 May 2016
  1. Fredholm BB, Bättig K, Holmén J, et al. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999 ; 51 : 83–133. [PubMed] [Google Scholar]
  2. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets: what are the challenges?. Nat Rev Drug Discov 2013 ; 12 : 265–286. [CrossRef] [PubMed] [Google Scholar]
  3. Sawynok J. Pharmacological rationale for the clinical use of caffeine. Drugs 1995 ; 49 : 37–50. [CrossRef] [PubMed] [Google Scholar]
  4. Fuxe K, Ferré S, Genedani S, et al. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007 ; 92 : 210–217. [CrossRef] [PubMed] [Google Scholar]
  5. El Yacoubi M, Ledent C, Parmentier M, et al. Reduced appetite for caffeine in adenosine A2A receptor knockout mice. Eur J Pharmacol 2005 ; 519 : 290–291. [CrossRef] [PubMed] [Google Scholar]
  6. Riksen NP, Smits P, Rongen GA. The cardiovascular effects of methylxanthines. Handb Exp Pharmacol 2011 ; 200 : 413–437. [CrossRef] [PubMed] [Google Scholar]
  7. Tabrizchi R, Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther 2001 ; 91 : 133–147. [CrossRef] [PubMed] [Google Scholar]
  8. Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol 2008 ; 153 : S446–S456. [CrossRef] [PubMed] [Google Scholar]
  9. Boekema PJ, Samsom M van, Berge Henegouwen GP, Smout AJ. Coffee and gastrointestinal function: facts and fiction. A review. Scand J Gastroenterol Suppl 1999 ; 230 : 35–39. [PubMed] [Google Scholar]
  10. Hodgson AB, Randell RK, Jeukendrup AE. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS One 2013 ; 8 : e59561. [CrossRef] [PubMed] [Google Scholar]
  11. Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond) 1987 ; 72 : 749–756. [CrossRef] [PubMed] [Google Scholar]
  12. Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet 2003 ; 16 : 411–420. [CrossRef] [PubMed] [Google Scholar]
  13. Neuhäuser-Berthold, Beine S, Verwied SC, Lührmann PM. Coffee consumption and total body water homeostasis as measured by fluid balance and bioelectrical impedance analysis. Ann Nutr Metab 1997 ; 41 : 29–36. [CrossRef] [PubMed] [Google Scholar]
  14. Izzo JL, Jr, Ghosal A, Kwong T, et al. Age and prior caffeine use alter the cardiovascular and adrenomedullary responses to oral caffeine. Am J Cardiol 1983 ; 52 : 769–773. [CrossRef] [PubMed] [Google Scholar]
  15. Greger R. Physiology of renal sodium transport. Am J Med Sci 2000 ; 319 : 51–62. [CrossRef] [PubMed] [Google Scholar]
  16. Pearce D, Soundararajan R, Trimpert C, et al. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 2015 ; 10 : 135–146. [CrossRef] [PubMed] [Google Scholar]
  17. Vallon V, Osswald H. Adenosine receptors and the kidney. Handb Exp Pharmacol 2009 ; 193 : 443–470. [CrossRef] [PubMed] [Google Scholar]
  18. Brown R, Ollerstam A, Johansson B, et al. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 2001 ; 281 : R1362–R1367. [CrossRef] [PubMed] [Google Scholar]
  19. Sun D, Samuelson LC, Yang T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 2001 ; 98 : 9983–9988. [CrossRef] [Google Scholar]
  20. Rieg T, Steigele H, Schnermann J, et al. Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 2005 ; 313 : 403–409. [CrossRef] [PubMed] [Google Scholar]
  21. Osswald H, Schnermann J. Methylxanthines and the kidney. Handb Exp Pharmacol 2011 ; 200 : 391–412. [CrossRef] [PubMed] [Google Scholar]
  22. Shirley DG, Walter SJ, Noormohamed FH. Natriuretic effect of caffeine: assessment of segmental sodium reabsorption in humans. Clin Sci (Lond) 2002 ; 103 : 461–466. [CrossRef] [PubMed] [Google Scholar]
  23. Lee J, Ha JH, Kim S, et al. Caffeine decreases the expression of Na+/K+-ATPase and the type 3 Na+/H+ exchanger in rat kidney. Clin Exp Pharmacol Physiol 2002 ; 29 : 559–563. [CrossRef] [PubMed] [Google Scholar]
  24. Fenton RA, Poulsen SB, de la Mora Chavez S, et al. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 2015 ; 308 : F1409–F1420. [CrossRef] [PubMed] [Google Scholar]
  25. Massey LK, Bergman EA, Wise KJ, Sherrard DJ. Interactions between dietary caffeine and calcium on calcium and bone metabolism in older women. J Am Coll Nutr 1994 ; 13 : 592–596. [CrossRef] [PubMed] [Google Scholar]
  26. Wise KJ, Bergman EA, Sherrard DJ, Massey LK. Interactions between dietary calcium and caffeine consumption on calcium metabolism in hypertensive humans. Am J Hypertens 1996 ; 9 : 223–229. [CrossRef] [PubMed] [Google Scholar]
  27. Mester R, Toren P, Mizrachi I, et al. Caffeine withdrawal increases lithium blood levels. Biol Psychiatry 1995 ; 37 : 348–350. [CrossRef] [PubMed] [Google Scholar]
  28. Ming Z, Smyth DD, Lautt WW. Decreases in portal flow trigger a hepatorenal reflex to inhibit renal sodium and water excretion in rats: role of adenosine. Hepatology 2002 ; 35 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  29. Ming Z, Lautt WW. Caffeine-induced natriuresis and diuresis via blockade of hepatic adenosine-mediated sensory nerves and a hepatorenal reflex. Can J Physiol Pharmacol 2010 ; 88 : 1115–1121. [CrossRef] [PubMed] [Google Scholar]
  30. Møller S, Bendtsen F, Henriksen JH. Pathophysiological basis of pharmacotherapy in the hepatorenal syndrome. Scand J Gastroenterol 2005 ; 40 : 491–500. [CrossRef] [PubMed] [Google Scholar]
  31. Rafael C, Chavez-Canales M, Hadchouel J. Une vision nouvelle du rôle de WNK1 et WNK4 dans la régulation de la réabsorption de NaCl et la sécrétion de potassium par le néphron distal. Med Sci (Paris) 2016 ; 32 : 274–280. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.