Free Access
Med Sci (Paris)
Volume 32, Number 5, Mai 2016
Page(s) 470 - 477
Section M/S Revues
Published online 25 May 2016
  1. Perrin L, Monier B, Ponzielli R, et al. Drosophila cardiac tube organogenesis requires multiple phases of Hox activity. Dev Biol 2004 ; 272 : 419–431. [CrossRef] [PubMed] [Google Scholar]
  2. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002 ; 246 : 14–28. [CrossRef] [PubMed] [Google Scholar]
  3. Zaffran S, Reim I, Qian L, et al. Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 2006 ; 133 : 4073–4083. [CrossRef] [PubMed] [Google Scholar]
  4. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012 ; 100 : 253–277. [CrossRef] [PubMed] [Google Scholar]
  5. Monier B, Astier M, Sémériva M, et al. Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 2005 ; 132 : 5283–5293. [CrossRef] [PubMed] [Google Scholar]
  6. Zeitouni B, Sénatore S, Séverac D, et al. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 2007 ; 3 : 1907–1921. [CrossRef] [PubMed] [Google Scholar]
  7. Denholm B, Skaer H. Bringing together components of the fly renal system. Curr Opin Genet Dev 2009 ; 19 : 526–532. [CrossRef] [PubMed] [Google Scholar]
  8. Lim HY, Wang W, Chen J, et al. ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 2014 ; 7 : 35–44. [CrossRef] [PubMed] [Google Scholar]
  9. Lehmacher C, Abeln B, Paululat A. The ultrastructure of Drosophila heart cells. Arthropod Struct Dev 2012 ; 41 : 459–474. [CrossRef] [PubMed] [Google Scholar]
  10. Ocorr K, Vogler G, Bodmer R. Methods to assess Drosophila heart development, function and aging. Methods 2014 ; 68 : 265–272. [CrossRef] [PubMed] [Google Scholar]
  11. Wolf MJ, Amrein H, Izatt JA, et al. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 2006 ; 103 : 1394–1399. [CrossRef] [Google Scholar]
  12. Fink M, Callol-Massot C, Chu A, et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 2009 ; 46 : 101–113. [CrossRef] [PubMed] [Google Scholar]
  13. McNally EM, Barefield DY, Puckelwartz MJ. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab 2015 ; 21 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  14. Taghli-Lamallem O, Bodmer R, Chamberlain JS, et al. Genetics and pathogenic mechanisms of cardiomyopathies in the Drosophila model. Drug Discov Today Dis Model 2008 ; 5 : 125–134. [CrossRef] [Google Scholar]
  15. Wolf MJ. Modeling dilated cardiomyopathies in Drosophila. Trends Cardiovasc Med 2012 ; 22 : 55–61. [CrossRef] [PubMed] [Google Scholar]
  16. Cammarato A, Dambacher CM, Knowles AF, et al. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 2008 ; 19 : 553–562. [CrossRef] [PubMed] [Google Scholar]
  17. Viswanathan MC, Kaushik G, Engler AJ, et al. A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 2014 ; 114 : 6–17. [CrossRef] [Google Scholar]
  18. Allikian MJ, Bhabha G, Dospoy P, et al. Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet 2007 ; 16 : 2933–2943. [CrossRef] [PubMed] [Google Scholar]
  19. Goldstein JA, Kelly SM, LoPresti PP, et al. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Hum Mol Genet 2011 ; 20 : 894–904. [CrossRef] [PubMed] [Google Scholar]
  20. Taghli-Lamallem O, Akasaka T, Hogg G, et al. Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 2008 ; 7 : 237–249. [CrossRef] [PubMed] [Google Scholar]
  21. Taghli-Lamallem O, Jagla K, Chamberlain JS, et al. Mechanical and non-mechanical functions of dystrophin can prevent cardiac abnormalities in Drosophila. Exp Gerontol 2014 ; 49 : 26–34. [CrossRef] [PubMed] [Google Scholar]
  22. Xie HB, Cammarato A, Rajasekaran NS, et al. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster. PLoS Genet 2013 ; 9 : e1003544. [CrossRef] [PubMed] [Google Scholar]
  23. Zhang D, Ke L, Mackovicova K, et al. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol 2011 ; 51 : 381–389. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang D, Wu CT, Qi XY, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014 ; 129 : 346–358. [CrossRef] [PubMed] [Google Scholar]
  25. Neely GG, Kuba K, Cammarato A, et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 2010 ; 141 : 142–153. [CrossRef] [PubMed] [Google Scholar]
  26. Yu L, Lee T, Lin N, et al. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila. PLoS Genet 2010 ; 6 : e1000969. [CrossRef] [PubMed] [Google Scholar]
  27. Grossman TR, Gamliel A, Wessells RJ, et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet 2011 ; 7 : e1002344. [CrossRef] [PubMed] [Google Scholar]
  28. Borradaile NM, Schaffer JE. Lipotoxicity in the heart. Curr Hypertens Rep 2005 ; 7 : 412–417. [CrossRef] [PubMed] [Google Scholar]
  29. Birse RT, Choi J, Reardon K, et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 2010 ; 12 : 533–544. [CrossRef] [PubMed] [Google Scholar]
  30. Lee JH, Budanov A V, Park EJ, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010 ; 327 : 1223–1228. [CrossRef] [PubMed] [Google Scholar]
  31. Lim HY, Bodmer R. Phospholipid homeostasis and lipotoxic cardiomyopathy: a matter of balance. Fly (Austin) 2011 ; 5 : 234–236. [CrossRef] [PubMed] [Google Scholar]
  32. Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 2012 ; 23 : 90–97. [CrossRef] [PubMed] [Google Scholar]
  33. Diop SB, Bisharat-Kernizan J, Birse RT, et al. PGC-1/spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase. Cell Rep 2015 ; 10 : 1572–1584. [CrossRef] [PubMed] [Google Scholar]
  34. Lakatta EG. Heart aging: a fly in the ointment?. Circ Res 2001 ; 88 : 984–986. [CrossRef] [PubMed] [Google Scholar]
  35. Fadini GP, Ceolotto G, Pagnin E, et al. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell 2011 ; 10 : 10–17. [CrossRef] [PubMed] [Google Scholar]
  36. Paternostro G, Vignola C, Bartsch DU, et al. Age-associated cardiac dysfunction in Drosophila melanogaster. Circ Res 2001 ; 88 : 1053–1058. [CrossRef] [PubMed] [Google Scholar]
  37. Wessells RJ, Fitzgerald E, Cypser JR, et al. Insulin regulation of heart function in aging fruit flies. Nat Genet 2004 ; 36 : 1275–1281. [CrossRef] [PubMed] [Google Scholar]
  38. Ocorr K, Perrin L, Lim H-Y, et al. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med 2007 ; 17 : 177–182. [CrossRef] [PubMed] [Google Scholar]
  39. Monnier V, Iché-Torres M, Rera M, et al. dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet 2012 ; 8 : e1003081. [CrossRef] [PubMed] [Google Scholar]
  40. Gill S, Le HD, Melkani GC, et al. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 2015 ; 347 : 1265–1269. [CrossRef] [PubMed] [Google Scholar]
  41. Luong N, Davies CR, Wessells RJ, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006 ; 4 : 133–142. [CrossRef] [PubMed] [Google Scholar]
  42. Nishimura M, Ocorr K, Bodmer R, et al. Drosophila as a model to study cardiac aging. Exp Gerontol 2011 ; 46 : 326–330. [CrossRef] [PubMed] [Google Scholar]
  43. Mackay TFC, Richards S, Stone EA, et al. The Drosophila melanogaster genetic reference panel. Nature 2012 ; 482 : 173–178. [CrossRef] [PubMed] [Google Scholar]
  44. Mialet-Perez J, Douin-Echinard V, Cussac F. Vieillissement. Med Sci (Paris) 2015 ; 31 : 1006–1013. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.