Free Access
Issue
Med Sci (Paris)
Volume 32, Number 5, Mai 2016
Page(s) 461 - 469
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163205012
Published online 25 May 2016
  1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global burden of disease study 2013. Lancet 2014 ; 384 : 766–781. [CrossRef] [PubMed] [Google Scholar]
  2. Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol 2011 ; 31 : 2322–2330. [CrossRef] [PubMed] [Google Scholar]
  3. Magalhaes I, Pingris K, Poitou C, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 2015 ; 125 : 1752–1762. [CrossRef] [PubMed] [Google Scholar]
  4. Monteiro-Sepulveda M, Touch S, Mendes-Sa C, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab 2015 ; 22 : 113–124. [CrossRef] [PubMed] [Google Scholar]
  5. Dalmas E, Tordjman J, Guerre-Millo M, Clement K. Le tissu adipeux : un nouveau terrain de jeu pour les cellules immunitaires. Med Sci (Paris) 2011 ; 27 : 993–999. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1beta-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 2014 ; 63 : 1966–1977. [CrossRef] [PubMed] [Google Scholar]
  7. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013 ; 500 : 585–588. [CrossRef] [PubMed] [Google Scholar]
  8. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008 ; 57 : 1470–1481. [CrossRef] [PubMed] [Google Scholar]
  9. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat?. Clin Gastroenterol Hepatol 2013 ; 11 : 1075–1083. [CrossRef] [PubMed] [Google Scholar]
  10. Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010 ; 140 : 859–870. [CrossRef] [PubMed] [Google Scholar]
  11. Turner JR, Buschmann MM, Romero-Calvo I, et al. The role of molecular remodeling in differential regulation of tight junction permeability. Semin Cell Dev Biol 2014 ; 36 : 204–212. [CrossRef] [PubMed] [Google Scholar]
  12. Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 2010 ; 3 : 247–259. [CrossRef] [PubMed] [Google Scholar]
  13. Moreira AP, Texeira TF, Ferreira AB, et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. BrJ Nutr 2012 ; 108 : 801–809. [CrossRef] [PubMed] [Google Scholar]
  14. Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability: a new target for disease prevention and therapy. BMC Gastroenterol 2014 ; 14 : 189. [CrossRef] [PubMed] [Google Scholar]
  15. Johnson AM, Costanzo A, Gareau MG, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One 2015 ; 10 : e0122195. [CrossRef] [PubMed] [Google Scholar]
  16. Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr Metab (Lond) 2010 ; 7 : 19. [CrossRef] [PubMed] [Google Scholar]
  17. Brignardello J, Morales P, Diaz E, et al. Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Aliment Pharmacol Ther 2010 ; 32 : 1307–1314. [CrossRef] [PubMed] [Google Scholar]
  18. Teixeira TF, Souza NC, Chiarello PG, et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr 2012 ; 31 : 735–740. [CrossRef] [PubMed] [Google Scholar]
  19. Verdam FJ, Fuentes S, de Jonge C, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring) 2013 ; 21 : E607–E615. [CrossRef] [PubMed] [Google Scholar]
  20. Gummesson A, Carlsson LM, Storlien LH, et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring) 2011 ; 19 : 2280–2282. [CrossRef] [PubMed] [Google Scholar]
  21. Savassi-Rocha AL, Diniz MT, Vilela EG, et al. Changes in intestinal permeability after Roux-en-Y gastric bypass. Obes Surg 2014 ; 24 : 184–190. [CrossRef] [PubMed] [Google Scholar]
  22. Casselbrant A, Elias E, Fandriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2015 ; 11 : 45–53. [CrossRef] [PubMed] [Google Scholar]
  23. Burcelin R, Chabo C, Blasco-Baque V, et al. Le microbiote intestinal à l’originr de nouvelles perspectives thérapeutiques pour les maladies métaboliques ?. Med Sci (Paris) 2013 ; 29 : 800–806. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  24. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 2010 ; 10 : 735–744. [CrossRef] [PubMed] [Google Scholar]
  25. Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010 ; 5 : e12191. [CrossRef] [PubMed] [Google Scholar]
  26. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 ; 444 : 1027–1031. [CrossRef] [PubMed] [Google Scholar]
  27. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009 ; 457 : 480–484. [CrossRef] [PubMed] [Google Scholar]
  28. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006 ; 444 : 1022–1023. [CrossRef] [PubMed] [Google Scholar]
  29. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011 ; 334 : 105–108. [CrossRef] [PubMed] [Google Scholar]
  30. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007 ; 56 : 1761–1772. [CrossRef] [PubMed] [Google Scholar]
  31. Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011 ; 3 : 559–572. [CrossRef] [PubMed] [Google Scholar]
  32. Gonzalez-Quintela A, Alonso M, Campos J, et al. Determinants of serum concentrations of lipopolysaccharide-binding protein (LBP) in the adult population: the role of obesity. PLoS One 2013 ; 8 : e54600. [CrossRef] [PubMed] [Google Scholar]
  33. Moreno-Navarrete JM, Ortega F, Serino M, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes 2012 ; 36 : 1442–1449. [CrossRef] [PubMed] [Google Scholar]
  34. Sun L, Yu Z, Ye X, et al. A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care 2010 ; 33 : 1925–1932. [CrossRef] [PubMed] [Google Scholar]
  35. Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis 2015 ; 11 : 933–939. [CrossRef] [PubMed] [Google Scholar]
  36. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007 ; 86 : 1286–1292. [CrossRef] [PubMed] [Google Scholar]
  37. Vors C, Pineau G, Drai J, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab 2015 ; 100 : 3427–3435. [CrossRef] [PubMed] [Google Scholar]
  38. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011 ; 91 : 151–175. [CrossRef] [PubMed] [Google Scholar]
  39. Moreno-Navarrete JM, Sabater M, Ortega F, et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012 ; 7 : e37160. [CrossRef] [PubMed] [Google Scholar]
  40. Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009 ; 139 : 1619–1625. [CrossRef] [PubMed] [Google Scholar]
  41. Delzenne NM, Neyrinck AM, Backhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 2011 ; 7 : 639–646. [CrossRef] [PubMed] [Google Scholar]
  42. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013 ; 62 : 1112–1121. [CrossRef] [PubMed] [Google Scholar]
  43. Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 2011 ; 31 : 15–31. [CrossRef] [PubMed] [Google Scholar]
  44. Sabate JM, Jouet P, Harnois F, et al. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg 2008 ; 18 : 371–377. [CrossRef] [PubMed] [Google Scholar]
  45. Desseyn JL, Gouyer V, Gottrand F. Modification à façon des propriétés physiques du mucus. Med Sci (Paris) 2015 ; 31 : 1063–1066. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.