Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 5, Mai 2016
Page(s) 470 - 477
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163205013
Publié en ligne 25 mai 2016
  1. Perrin L, Monier B, Ponzielli R, et al. Drosophila cardiac tube organogenesis requires multiple phases of Hox activity. Dev Biol 2004 ; 272 : 419–431. [CrossRef] [PubMed]
  2. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002 ; 246 : 14–28. [CrossRef] [PubMed]
  3. Zaffran S, Reim I, Qian L, et al. Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 2006 ; 133 : 4073–4083. [CrossRef] [PubMed]
  4. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012 ; 100 : 253–277. [CrossRef] [PubMed]
  5. Monier B, Astier M, Sémériva M, et al. Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 2005 ; 132 : 5283–5293. [CrossRef] [PubMed]
  6. Zeitouni B, Sénatore S, Séverac D, et al. Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 2007 ; 3 : 1907–1921. [CrossRef] [PubMed]
  7. Denholm B, Skaer H. Bringing together components of the fly renal system. Curr Opin Genet Dev 2009 ; 19 : 526–532. [CrossRef] [PubMed]
  8. Lim HY, Wang W, Chen J, et al. ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 2014 ; 7 : 35–44. [CrossRef] [PubMed]
  9. Lehmacher C, Abeln B, Paululat A. The ultrastructure of Drosophila heart cells. Arthropod Struct Dev 2012 ; 41 : 459–474. [CrossRef] [PubMed]
  10. Ocorr K, Vogler G, Bodmer R. Methods to assess Drosophila heart development, function and aging. Methods 2014 ; 68 : 265–272. [CrossRef] [PubMed]
  11. Wolf MJ, Amrein H, Izatt JA, et al. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 2006 ; 103 : 1394–1399. [CrossRef]
  12. Fink M, Callol-Massot C, Chu A, et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 2009 ; 46 : 101–113. [CrossRef] [PubMed]
  13. McNally EM, Barefield DY, Puckelwartz MJ. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab 2015 ; 21 : 174–182. [CrossRef] [PubMed]
  14. Taghli-Lamallem O, Bodmer R, Chamberlain JS, et al. Genetics and pathogenic mechanisms of cardiomyopathies in the Drosophila model. Drug Discov Today Dis Model 2008 ; 5 : 125–134. [CrossRef]
  15. Wolf MJ. Modeling dilated cardiomyopathies in Drosophila. Trends Cardiovasc Med 2012 ; 22 : 55–61. [CrossRef] [PubMed]
  16. Cammarato A, Dambacher CM, Knowles AF, et al. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell 2008 ; 19 : 553–562. [CrossRef] [PubMed]
  17. Viswanathan MC, Kaushik G, Engler AJ, et al. A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 2014 ; 114 : 6–17. [CrossRef]
  18. Allikian MJ, Bhabha G, Dospoy P, et al. Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Hum Mol Genet 2007 ; 16 : 2933–2943. [CrossRef] [PubMed]
  19. Goldstein JA, Kelly SM, LoPresti PP, et al. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Hum Mol Genet 2011 ; 20 : 894–904. [CrossRef] [PubMed]
  20. Taghli-Lamallem O, Akasaka T, Hogg G, et al. Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 2008 ; 7 : 237–249. [CrossRef] [PubMed]
  21. Taghli-Lamallem O, Jagla K, Chamberlain JS, et al. Mechanical and non-mechanical functions of dystrophin can prevent cardiac abnormalities in Drosophila. Exp Gerontol 2014 ; 49 : 26–34. [CrossRef] [PubMed]
  22. Xie HB, Cammarato A, Rajasekaran NS, et al. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster. PLoS Genet 2013 ; 9 : e1003544. [CrossRef] [PubMed]
  23. Zhang D, Ke L, Mackovicova K, et al. Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for atrial fibrillation. J Mol Cell Cardiol 2011 ; 51 : 381–389. [CrossRef] [PubMed]
  24. Zhang D, Wu CT, Qi XY, et al. Activation of histone deacetylase-6 induces contractile dysfunction through derailment of α-tubulin proteostasis in experimental and human atrial fibrillation. Circulation 2014 ; 129 : 346–358. [CrossRef] [PubMed]
  25. Neely GG, Kuba K, Cammarato A, et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 2010 ; 141 : 142–153. [CrossRef] [PubMed]
  26. Yu L, Lee T, Lin N, et al. Affecting Rhomboid-3 function causes a dilated heart in adult Drosophila. PLoS Genet 2010 ; 6 : e1000969. [CrossRef] [PubMed]
  27. Grossman TR, Gamliel A, Wessells RJ, et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet 2011 ; 7 : e1002344. [CrossRef] [PubMed]
  28. Borradaile NM, Schaffer JE. Lipotoxicity in the heart. Curr Hypertens Rep 2005 ; 7 : 412–417. [CrossRef] [PubMed]
  29. Birse RT, Choi J, Reardon K, et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 2010 ; 12 : 533–544. [CrossRef] [PubMed]
  30. Lee JH, Budanov A V, Park EJ, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 2010 ; 327 : 1223–1228. [CrossRef] [PubMed]
  31. Lim HY, Bodmer R. Phospholipid homeostasis and lipotoxic cardiomyopathy: a matter of balance. Fly (Austin) 2011 ; 5 : 234–236. [CrossRef] [PubMed]
  32. Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 2012 ; 23 : 90–97. [CrossRef] [PubMed]
  33. Diop SB, Bisharat-Kernizan J, Birse RT, et al. PGC-1/spargel counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brummer ATGL lipase. Cell Rep 2015 ; 10 : 1572–1584. [CrossRef]
  34. Lakatta EG. Heart aging: a fly in the ointment?. Circ Res 2001 ; 88 : 984–986. [CrossRef] [PubMed]
  35. Fadini GP, Ceolotto G, Pagnin E, et al. At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell 2011 ; 10 : 10–17. [CrossRef] [PubMed]
  36. Paternostro G, Vignola C, Bartsch DU, et al. Age-associated cardiac dysfunction in Drosophila melanogaster. Circ Res 2001 ; 88 : 1053–1058. [CrossRef] [PubMed]
  37. Wessells RJ, Fitzgerald E, Cypser JR, et al. Insulin regulation of heart function in aging fruit flies. Nat Genet 2004 ; 36 : 1275–1281. [CrossRef] [PubMed]
  38. Ocorr K, Perrin L, Lim H-Y, et al. Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med 2007 ; 17 : 177–182. [CrossRef] [PubMed]
  39. Monnier V, Iché-Torres M, Rera M, et al. dJun and Vri/dNFIL3 are major regulators of cardiac aging in Drosophila. PLoS Genet 2012 ; 8 : e1003081. [CrossRef] [PubMed]
  40. Gill S, Le HD, Melkani GC, et al. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 2015 ; 347 : 1265–1269. [CrossRef] [PubMed]
  41. Luong N, Davies CR, Wessells RJ, et al. Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. Cell Metab 2006 ; 4 : 133–142. [CrossRef] [PubMed]
  42. Nishimura M, Ocorr K, Bodmer R, et al. Drosophila as a model to study cardiac aging. Exp Gerontol 2011 ; 46 : 326–330. [CrossRef] [PubMed]
  43. Mackay TFC, Richards S, Stone EA, et al. The Drosophila melanogaster genetic reference panel. Nature 2012 ; 482 : 173–178. [CrossRef] [PubMed]
  44. Mialet-Perez J, Douin-Echinard V, Cussac F. Vieillissement. Med Sci (Paris) 2015 ; 31 : 1006–1013. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.