Free Access
Med Sci (Paris)
Volume 32, Number 3, Mars 2016
Page(s) 290 - 296
Section M/S Revues
Published online 23 March 2016
  1. Junt T, Schulze H, Chen Z, et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007 ; 317 : 1767–1770. [CrossRef] [PubMed] [Google Scholar]
  2. Patel SR, Richardson JL, Schulze H, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 2005 ; 106 : 4076–4085. [CrossRef] [PubMed] [Google Scholar]
  3. Italiano JE, Jr, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999 ; 147 : 1299–1312. [CrossRef] [PubMed] [Google Scholar]
  4. Leven RM. Megakaryocyte motility and platelet formation. Scanning Microsc 1987 ; 1 : 1701–1709. [PubMed] [Google Scholar]
  5. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res 2004 ; 114 : 447–453. [CrossRef] [PubMed] [Google Scholar]
  6. Liddington RC. Structural aspects of integrins. Adv Exp Med Biol 2014 ; 819 : 111–126. [CrossRef] [PubMed] [Google Scholar]
  7. Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ. Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood 2003 ; 102 : 4035–4043. [CrossRef] [PubMed] [Google Scholar]
  8. Danen EH, Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol 2003 ; 201 : 632–641. [CrossRef] [PubMed] [Google Scholar]
  9. Stupack DG, Cheresh DA. Apoptotic cues from the extracellular matrix: regulators of angiogenesis. Oncogene 2003 ; 22 : 9022–9029. [CrossRef] [PubMed] [Google Scholar]
  10. Ceze N, Lecomte T, Watier H. Anticorps monoclonaux thérapeutiques et ciblage vasculaire. Med Sci (Paris) 2009 ; 25 : 1099–1104. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer 2004 ; 90 : 561–565. [CrossRef] [PubMed] [Google Scholar]
  12. Wehrle-Haller B, Imhof BA. Integrin-dependent pathologies. J Pathol 2003 ; 200 : 481–487. [CrossRef] [PubMed] [Google Scholar]
  13. Jackson SP, Nesbitt WS, Kulkarni S. Signaling events underlying thrombus formation. J Thromb Haemost 2003 ; 1 : 1602–1612. [CrossRef] [PubMed] [Google Scholar]
  14. Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001 ; 294 : 339–345. [CrossRef] [PubMed] [Google Scholar]
  15. Gottschalk KE. A coiled-coil structure of the alphaIIbbeta3 integrin transmembrane and cytoplasmic domains in its resting state. Structure 2005 ; 13 : 703–712. [CrossRef] [PubMed] [Google Scholar]
  16. Wegener KL, Campbell ID. Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol 2008 ; 25 : 376–387. [CrossRef] [PubMed] [Google Scholar]
  17. Fiore M, Nurden AT, Nurden P, Seligsohn U. Clinical utility gene card for: Glanzmann thrombasthenia. Eur J Hum Genet 2012 ; 20 : 1102. [CrossRef] [Google Scholar]
  18. Nurden AT. Inherited abnormalities of platelets. Thromb Haemost 1999 ; 82 : 468–480. [PubMed] [Google Scholar]
  19. Nurden AT, Pillois X, Fiore M, et al. Expanding the mutation spectrum affecting alphaIIbbeta3 iIntegrin in Glanzmann thrombasthenia: screening of the ITGA2B and ITGB3 genes in a large international cohort. Hum Mutat 2015 ; 36 : 548–561. [CrossRef] [PubMed] [Google Scholar]
  20. Hardisty R, Pidard D, Cox A, et al. A defect of platelet aggregation associated with an abnormal distribution of glycoprotein IIb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder. Blood 1992 ; 80 : 696–708. [PubMed] [Google Scholar]
  21. Peyruchaud O, Nurden AT, Milet S, et al. R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin IIb subunit in a patient with a Glanzmann’s thrombasthenia-like syndrome. Blood 1998 ; 92 : 4178–4187. [PubMed] [Google Scholar]
  22. Ghevaert C, Salsmann A, Watkins NA, et al. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood 2008 ; 111 : 3407–3414. [CrossRef] [PubMed] [Google Scholar]
  23. Kashiwagi H, Kunishima S, Kiyomizu K, et al. Demonstration of novel gain-of-function mutations of alphaIIbbeta3: association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype. Mol Genet Genomic Med 2013 ; 1 : 77–86. [CrossRef] [PubMed] [Google Scholar]
  24. Gresele P, Falcinelli E, Giannini S, et al. Dominant inheritance of a novel integrin beta3 mutation associated with a hereditary macrothrombocytopenia and platelet dysfunction in two Italian families. Haematologica 2009 ; 94 : 663–669. [CrossRef] [PubMed] [Google Scholar]
  25. Kunishima S, Kashiwagi H, Otsu M, et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the alphaIIbbeta3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 2011 ; 117 : 5479–5484. [CrossRef] [PubMed] [Google Scholar]
  26. Kobayashi Y, Matsui H, Kanai A, et al. Identification of the integrin beta3 L718P mutation in a pedigree with autosomal dominant thrombocytopenia with anisocytosis. Br J Haematol 2013 ; 160 : 521–529. [CrossRef] [PubMed] [Google Scholar]
  27. Wu Y, Span LM, Nygren P, et al. The tyrosine kinase c-Src specifically binds to the active integrin alphaIIbbeta3 to initiate outside-in signaling in platelets. J Biol Chem 2015 ; 290 : 15825–15834. [CrossRef] [PubMed] [Google Scholar]
  28. Bury L, Malara A, Gresele P, Balduini A. Outside-in signalling generated by a constitutively activated integrin alphaIIbbeta3 impairs proplatelet formation in human megakaryocytes. PLoS One 2012 ; 7 : e34449. [CrossRef] [PubMed] [Google Scholar]
  29. Primeau M, Lamarche-Vane N. Coup d’œil sur les petites GTPases Rho. Med Sci (Paris) 2008 ; 24 : 157–162. [Google Scholar]
  30. Chang Y, Aurade F, Larbret F, et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 2007 ; 109 : 4229–4236. [CrossRef] [PubMed] [Google Scholar]
  31. Schaffner-Reckinger E, Salsmann A, Debili N, et al. Overexpression of the partially activated alpha(IIb)beta3D723H integrin salt bridge mutant downregulates RhoA activity and induces microtubule-dependent proplatelet-like extensions in Chinese hamster ovary cells. J Thromb Haemost 2009 ; 7 : 1207–1217. [CrossRef] [PubMed] [Google Scholar]
  32. McMillan R, Wang L, Tomer A, et al. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood 2004 ; 103 : 1364–1369. [CrossRef] [PubMed] [Google Scholar]
  33. Lev PR, Grodzielski M, Goette NP, et al. Impaired proplatelet formation in immune thrombocytopenia: a novel mechanism contributing to decreased platelet count. Br J Haematol 2014 ; 165 : 854–864. [CrossRef] [PubMed] [Google Scholar]
  34. Takahashi R, Sekine N, Nakatake T. Influence of monoclonal antiplatelet glycoprotein antibodies on in vitro human megakaryocyte colony formation and proplatelet formation. Blood 1999 ; 93 : 1951–1958. [PubMed] [Google Scholar]
  35. Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 2006 ; 108 : 1509–1514. [CrossRef] [PubMed] [Google Scholar]
  36. Debili N, Vainchenker W. De macro à micro : l’histoire de la plaquette. Med Sci (Paris) 2008 ; 24 : 467–469. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.