Free Access
Issue
Med Sci (Paris)
Volume 32, Number 3, Mars 2016
Page(s) 274 - 280
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163203012
Published online 23 March 2016
  1. Berghoff RS, Geraci AS. The influence of sodium chloride on blood pressure. Br Med J 1929 ; 56 : 395–397. [Google Scholar]
  2. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med 2001 ; 344 : 3–10. [Google Scholar]
  3. Guyton AC, Coleman TG, Cowley AV, Jr, et al. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 1972 ; 52 : 584–594. [CrossRef] [PubMed] [Google Scholar]
  4. Gordon RD, Klemm, SA, Tunny TJ et al. Gordon’s syndrome: a sodium-volume-dependent form of hypertension with a genetic basis. In: Brenner JHLaBM, ed., Hypertension: patholgy, diagnosis and management. New York : Raven Press, 1995 : 2111–2113. [Google Scholar]
  5. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science 2001 ; 293 : 1107–1112. [CrossRef] [PubMed] [Google Scholar]
  6. Xu B, English JM, Wilsbacher JL, et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 2000 ; 275 : 16795–16801. [CrossRef] [PubMed] [Google Scholar]
  7. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 2014 ; 26 : 1781–1786. [CrossRef] [PubMed] [Google Scholar]
  8. Chavez-Canales M, Zhang C, Soukaseum C, et al. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 2014 ; 64 : 1047–1053. [CrossRef] [PubMed] [Google Scholar]
  9. Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003 ; 100 : 680–684. [CrossRef] [Google Scholar]
  10. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003 ; 111 : 1039–1045. [CrossRef] [PubMed] [Google Scholar]
  11. Delaloy C, Lu J, Houot AM, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003 ; 23 : 9208–9221. [CrossRef] [PubMed] [Google Scholar]
  12. Vidal-Petiot E, Elvira-Matelot E, Mutig K, et al. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA 2013 ; 110 : 14366–14371. [CrossRef] [Google Scholar]
  13. Golbang AP, Cope G, Hamad A, et al. Regulation of the expression of the Na/Cl cotransporter (NCCT) by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Renal Physiol 2006 ; 291 : F1369–F1376. [CrossRef] [PubMed] [Google Scholar]
  14. Moriguchi T, Urushiyama S, Hisamoto N, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 2005 ; 280 : 42685–42693. [CrossRef] [PubMed] [Google Scholar]
  15. Zambrowicz BP, Abuin A, Ramirez-Solis R, et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 2003 ; 100 : 14109–14114. [CrossRef] [Google Scholar]
  16. Vidal-Petiot E, Cheval L, Faugeroux J, et al. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLoS One 2012 ; 7 : e37751. [CrossRef] [PubMed] [Google Scholar]
  17. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, et al. Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA 2012 ; 109 : 7929–7934. [CrossRef] [Google Scholar]
  18. Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 2001 ; 11 : 82–88. [CrossRef] [PubMed] [Google Scholar]
  19. Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 2012 ; 482 : 98–102. [CrossRef] [PubMed] [Google Scholar]
  20. Louis-Dit-Picard H, Barc J, Trujillano D, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 2012 ; 44 (456–60) : S1–S3. [CrossRef] [Google Scholar]
  21. Shibata S, Zhang J, Puthumana J, et al. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA 2013 ; 110 : 7838–7843. [CrossRef] [Google Scholar]
  22. Wakabayashi M, Mori T, Isobe K, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 2013 ; 3 : 858–868. [CrossRef] [PubMed] [Google Scholar]
  23. Wu G, Peng JB. Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett 2013 ; 587 : 2099–2104. [CrossRef] [PubMed] [Google Scholar]
  24. Piala AT, Moon TM, Akella R, et al. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 2014 ; 7 : ra41. [CrossRef] [PubMed] [Google Scholar]
  25. Zagorska A, Pozo-Guisado E, Boudeau J, et al. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol 2007 ; 176 : 89–100. [CrossRef] [PubMed] [Google Scholar]
  26. Boettger T, Hubner CA, Maier H, et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 2002 ; 416 : 874–878. [CrossRef] [PubMed] [Google Scholar]
  27. Terker AS, Zhang C, Erspamer KJ, et al. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 2015 ; doi : 10.1038/ki.2015.289. [Google Scholar]
  28. Vallon V, Schroth J, Lang F, et al. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 2009 ; 297 : F704–F712. [CrossRef] [PubMed] [Google Scholar]
  29. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 2015 ; 21 : 39–50. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang C, Wang L, Zhang J, et al. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 2014 ; 111 : 11864–11869. [CrossRef] [Google Scholar]
  31. Reichold M, Zdebik AA, Lieberer E, et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 2010 ; 107 : 14490–14495. [CrossRef] [Google Scholar]
  32. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 2009 ; 106 : 5842–5847. [CrossRef] [Google Scholar]
  33. Eladari D, Chambrey R, Leviel F. Identification d’une nouvelle cible des diurétiques thiazidiques dans le rein. Med Sci (Paris) 2010 ; 26 : 549–552. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Hadchouel J, Delaloy C, Jeunemaitre X. WNK1 et WNK4, nouveaux acteurs de l’homéostasie hydrosodée. Med Sci (Paris) 2005 ; 21 : 55–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Louis-Dit-Picard H, Hadchouel J, Jeunemaitre X. KLHL3 et CULLIN-3. Med Sci (Paris) 2012 ; 28 : 703–706. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.