Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 3, Mars 2016
Page(s) 274 - 280
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163203012
Publié en ligne 23 mars 2016
  1. Berghoff RS, Geraci AS. The influence of sodium chloride on blood pressure. Br Med J 1929 ; 56 : 395–397.
  2. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med 2001 ; 344 : 3–10. [CrossRef] [PubMed]
  3. Guyton AC, Coleman TG, Cowley AV, Jr, et al. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med 1972 ; 52 : 584–594. [CrossRef] [PubMed]
  4. Gordon RD, Klemm, SA, Tunny TJ et al. Gordon’s syndrome: a sodium-volume-dependent form of hypertension with a genetic basis. In: Brenner JHLaBM, ed., Hypertension: patholgy, diagnosis and management. New York : Raven Press, 1995 : 2111–2113.
  5. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science 2001 ; 293 : 1107–1112. [CrossRef] [PubMed]
  6. Xu B, English JM, Wilsbacher JL, et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 2000 ; 275 : 16795–16801. [CrossRef] [PubMed]
  7. Bazua-Valenti S, Chavez-Canales M, Rojas-Vega L, et al. The effect of WNK4 on the Na+-Cl- cotransporter is modulated by intracellular chloride. J Am Soc Nephrol 2014 ; 26 : 1781–1786. [CrossRef] [PubMed]
  8. Chavez-Canales M, Zhang C, Soukaseum C, et al. WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension 2014 ; 64 : 1047–1053. [CrossRef] [PubMed]
  9. Wilson FH, Kahle KT, Sabath E, et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci USA 2003 ; 100 : 680–684. [CrossRef]
  10. Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 2003 ; 111 : 1039–1045. [CrossRef] [PubMed]
  11. Delaloy C, Lu J, Houot AM, et al. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003 ; 23 : 9208–9221. [CrossRef] [PubMed]
  12. Vidal-Petiot E, Elvira-Matelot E, Mutig K, et al. WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci USA 2013 ; 110 : 14366–14371. [CrossRef]
  13. Golbang AP, Cope G, Hamad A, et al. Regulation of the expression of the Na/Cl cotransporter (NCCT) by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved. Am J Physiol Renal Physiol 2006 ; 291 : F1369–F1376. [CrossRef] [PubMed]
  14. Moriguchi T, Urushiyama S, Hisamoto N, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem 2005 ; 280 : 42685–42693. [CrossRef] [PubMed]
  15. Zambrowicz BP, Abuin A, Ramirez-Solis R, et al. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 2003 ; 100 : 14109–14114. [CrossRef]
  16. Vidal-Petiot E, Cheval L, Faugeroux J, et al. A new methodology for quantification of alternatively spliced exons reveals a highly tissue-specific expression pattern of WNK1 isoforms. PLoS One 2012 ; 7 : e37751. [CrossRef] [PubMed]
  17. Castaneda-Bueno M, Cervantes-Perez LG, Vazquez N, et al. Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA 2012 ; 109 : 7929–7934. [CrossRef]
  18. Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 2001 ; 11 : 82–88. [CrossRef] [PubMed]
  19. Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 2012 ; 482 : 98–102. [CrossRef] [PubMed]
  20. Louis-Dit-Picard H, Barc J, Trujillano D, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 2012 ; 44 (456–60) : S1–S3. [CrossRef]
  21. Shibata S, Zhang J, Puthumana J, et al. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA 2013 ; 110 : 7838–7843. [CrossRef]
  22. Wakabayashi M, Mori T, Isobe K, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 2013 ; 3 : 858–868. [CrossRef] [PubMed]
  23. Wu G, Peng JB. Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett 2013 ; 587 : 2099–2104. [CrossRef] [PubMed]
  24. Piala AT, Moon TM, Akella R, et al. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 2014 ; 7 : ra41. [CrossRef] [PubMed]
  25. Zagorska A, Pozo-Guisado E, Boudeau J, et al. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J Cell Biol 2007 ; 176 : 89–100. [CrossRef] [PubMed]
  26. Boettger T, Hubner CA, Maier H, et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 2002 ; 416 : 874–878. [CrossRef] [PubMed]
  27. Terker AS, Zhang C, Erspamer KJ, et al. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 2015 ; doi : 10.1038/ki.2015.289.
  28. Vallon V, Schroth J, Lang F, et al. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. Am J Physiol Renal Physiol 2009 ; 297 : F704–F712. [CrossRef] [PubMed]
  29. Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 2015 ; 21 : 39–50. [CrossRef] [PubMed]
  30. Zhang C, Wang L, Zhang J, et al. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 2014 ; 111 : 11864–11869. [CrossRef]
  31. Reichold M, Zdebik AA, Lieberer E, et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 2010 ; 107 : 14490–14495. [CrossRef]
  32. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 2009 ; 106 : 5842–5847. [CrossRef]
  33. Eladari D, Chambrey R, Leviel F. Identification d’une nouvelle cible des diurétiques thiazidiques dans le rein. Med Sci (Paris) 2010 ; 26 : 549–552. [CrossRef] [EDP Sciences] [PubMed]
  34. Hadchouel J, Delaloy C, Jeunemaitre X. WNK1 et WNK4, nouveaux acteurs de l’homéostasie hydrosodée. Med Sci (Paris) 2005 ; 21 : 55–60. [CrossRef] [EDP Sciences] [PubMed]
  35. Louis-Dit-Picard H, Hadchouel J, Jeunemaitre X. KLHL3 et CULLIN-3. Med Sci (Paris) 2012 ; 28 : 703–706. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.