Free Access
Med Sci (Paris)
Volume 32, Number 3, Mars 2016
Page(s) 267 - 273
Section M/S Revues
Published online 23 March 2016
  1. Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J 1997 ; 11 : 428–442. [PubMed] [Google Scholar]
  2. Kersey JH, LeBien TW, Abramson CS, et al. P-24: a human leukemia-associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody. J Exp Med 1981 ; 153 : 726–731. [CrossRef] [PubMed] [Google Scholar]
  3. Hemler ME. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 2014 ; 14 : 49–60. [CrossRef] [PubMed] [Google Scholar]
  4. Charrin S, le Naour F, Silvie O, et al. Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 2009 ; 420 : 133–154. [CrossRef] [PubMed] [Google Scholar]
  5. Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 1998 ; 9 : 2751–2765. [CrossRef] [PubMed] [Google Scholar]
  6. Serru V, Le Naour F, Billard M, et al. Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 1999 ; 340 : 103–111. [PubMed] [Google Scholar]
  7. Sterk LM, Geuijen CA, Oomen LC, et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6 beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 2000 ; 149 : 969–982. [CrossRef] [PubMed] [Google Scholar]
  8. Kazarov AR, Yang X, Stipp CS, et al. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 2002 ; 158 : 1299–1309. [CrossRef] [PubMed] [Google Scholar]
  9. Lammerding J, Kazarov AR, Huang H, et al. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci USA 2003 ; 100 : 7616–7621. [CrossRef] [Google Scholar]
  10. Zhang XA, Kazarov AR, Yang X, et al. Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 2002 ; 13 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  11. Seigneuret M, Delaguillaumie A, Lagaudrière-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 2001 ; 276 : 40055–40064. [CrossRef] [PubMed] [Google Scholar]
  12. Baudoux B, Castanares-Zapatero D, Leclercq-Smekens M, et al. The tetraspanin CD9 associates with the integrin alpha6beta4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 2000 ; 79 : 41–51. [CrossRef] [PubMed] [Google Scholar]
  13. Peñas PF, García-Díez A, Sánchez-Madrid F, Yáñez-Mó M. Tetraspanins are localized at motility-related structures and involved in normal human keratinocyte wound healing migration. J Invest Dermatol 2000 ; 114 : 1126–1135. [CrossRef] [PubMed] [Google Scholar]
  14. Whittock NV, McLean WH. Genomic organization, amplification, fine mapping, and intragenic polymorphisms of the human hemidesmosomal tetraspanin CD151 gene. Biochem Biophys Res Commun 2001 ; 281 : 425–430. [CrossRef] [PubMed] [Google Scholar]
  15. Geary SM, Cowin AJ, Copeland B, et al. The role of the tetraspanin CD151 in primary keratinocyte and fibroblast functions: implications for wound healing. Exp Cell Res 2008 ; 314 : 2165–2175. [CrossRef] [PubMed] [Google Scholar]
  16. Wright MD, Geary SM, Fitter S, et al. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 2004 ; 24 : 5978–5988. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang J, Dong J, Gu H, et al. CD9 is critical for cutaneous wound healing through JNK signaling. J Invest Dermatol 2012 ; 132 : 226–236. [CrossRef] [PubMed] [Google Scholar]
  18. Karamatic Crew V, Burton N, Kagan A, et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 2004 ; 104 : 2217–2223. [CrossRef] [PubMed] [Google Scholar]
  19. Ruzzi L, Gagnoux-Palacios L, Pinola M, et al. A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 1997 ; 99 : 2826–2831. [CrossRef] [PubMed] [Google Scholar]
  20. Jiang XP, Zhang DX, Teng M, et al. Downregulation of CD9 in keratinocyte contributes to cell migration via upregulation of matrix metalloproteinase-9. PLoS One 2013 ; 8 : e77806. [CrossRef] [PubMed] [Google Scholar]
  21. Jiang X, Teng M, Guo X, et al. Switch from αvβ5 to αvβ6 integrin is required for CD9-regulated keratinocyte migration and MMP-9 activation. FEBS Lett 2014 ; 588 : 4044–4052. [CrossRef] [PubMed] [Google Scholar]
  22. Van Niel G, Charrin S, Simoes S, et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 2011 ; 21 : 708–721. [CrossRef] [PubMed] [Google Scholar]
  23. García-López MA, Barreiro O, García-Díez A, et al. Role of tetraspanins CD9 and CD151 in primary melanocyte motility. J Invest Dermatol 2005 ; 125 : 1001–1009. [CrossRef] [PubMed] [Google Scholar]
  24. Ach T, Ziemer M, Dawczynski J, et al. Differential expression of tetraspanin CD9 in basal cell and squamous cell carcinomas of the skin and actinic keratosis. Oncol Lett 2010 ; 1 : 37–40. [PubMed] [Google Scholar]
  25. Li Q, Yang XH, Xu F, et al. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 2013 ; 32 : 1772–1783. [CrossRef] [PubMed] [Google Scholar]
  26. Farahani E, Patra HK, Jangamreddy JR, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis 2014 ; 35 : 747–759. [CrossRef] [PubMed] [Google Scholar]
  27. Sachs N, Secades P, van Hulst L, et al. Reduced susceptibility to two-stage skin carcinogenesis in mice with epidermis-specific deletion of CD151. J Invest Dermatol 2014 ; 134 : 221–228. [CrossRef] [PubMed] [Google Scholar]
  28. Chan KS, Sano S, Kiguchi K, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest 2004 ; 114 : 720–728. [CrossRef] [PubMed] [Google Scholar]
  29. Chan KS, Sano S, Kataoka K, et al. Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene 2008 ; 27 : 1087–1094. [CrossRef] [PubMed] [Google Scholar]
  30. Longo N, Yáñez-Mó M, Mittelbrunn M, et al. Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 2001 ; 98 : 3717–3726. [CrossRef] [PubMed] [Google Scholar]
  31. Hong IK, Kim YM, Jeoung DI, et al. Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp Mol Med 2005 ; 37 : 230–239. [CrossRef] [PubMed] [Google Scholar]
  32. Trabado S, Nguyen Van Binh P, Martin C, et al. Modulated expression of cell surface molecules and in vivo outgrowth of modified melanoma cells. Biomed Pharmacother 2006 ; 60 : 693–697. [CrossRef] [PubMed] [Google Scholar]
  33. Fan J, Zhu GZ, Niles RM. Expression and function of CD9 in melanoma cells. Mol Carcinog 2010 ; 49 : 85–93. [PubMed] [Google Scholar]
  34. Mischiati C, Natali PG, Sereni A, et al. cDNA-array profiling of melanomas and paired melanocyte cultures. J Cell Physiol 2006 ; 207 : 697–705. [CrossRef] [PubMed] [Google Scholar]
  35. Yin M, Soikkeli J, Jahkola T, et al. Osteopontin promotes the invasive growth of melanoma cells by activating integrin αvβ3 and down-regulating tetraspanin CD9. Am J Pathol 2014 ; 184 : 842–858. [CrossRef] [PubMed] [Google Scholar]
  36. Hong IK, Jin YJ, Byun HJ, et al. Homophilic interactions of tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 2006 ; 281 : 24279–24292. [CrossRef] [PubMed] [Google Scholar]
  37. Hong IK, Byun HJ, Lee J, et al. The tetraspanin CD81 protein increases melanoma cell motility by up-regulating metalloproteinase MT1-MMP expression through the pro-oncogenic Akt-dependent Sp1 activation signaling pathways. J Biol Chem 2014 ; 289 : 15691–15704. [CrossRef] [PubMed] [Google Scholar]
  38. Yáñez-Mó M, Barreiro O, Gordon-Alonso M, et al. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 2009 ; 19 : 434–446. [CrossRef] [PubMed] [Google Scholar]
  39. Lupia A, Peppicelli S, Witort E, et al. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells. J Invest Dermatol 2014 ; 134 : 2947–2956. [CrossRef] [PubMed] [Google Scholar]
  40. Jang HI, Lee H. A decrease in the expression of CD63 tetraspanin protein elevates invasive potential of human melanoma cells. Exp Mol Med 2003 ; 35 : 317–323. [CrossRef] [PubMed] [Google Scholar]
  41. Toricelli M, Melo FH, Peres GB, et al. Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation. Mol Cancer 2013 ; 12 : 22. [CrossRef] [PubMed] [Google Scholar]
  42. Berthier-Vergnes O, Kharbili ME, de la Fouchardière A, et al. Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion. Br J Cancer 2011 ; 104 : 155–165. [CrossRef] [PubMed] [Google Scholar]
  43. Assil S, Décembre E, Dreux M. Les exosomes. Med Sci (Paris) 2013 ; 29 : 104–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Delevoye C, Giordano F, van Niel G, Raposo G. La biogenèse des mélanosomes. Med Sci (Paris) 2011 ; 27 : 153–162. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Chabas D. L’ostéopontine, une molécule aux multiples facettes. Med Sci (Paris) 2005 ; 21 : 832–838. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.