Free Access
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 51 - 56
Section M/S Revues
Published online 05 February 2016
  1. WHO/UNEP. State of the science of endocrine disrupting chemicals – 2012. An assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme (UNEP) and WHO. Geneva : WHO, 2013 : 296 p. [Google Scholar]
  2. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Ann Rev Physiol 2011 ; 73 : 135–162. [CrossRef] [Google Scholar]
  3. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National toxicology program workshop review. Environ Health Perspect 2012 ; 120 : 779–789. [CrossRef] [PubMed] [Google Scholar]
  4. Ruzzin J, Petersen R, Meugnier E, et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 2010 ; 118 : 465–471. [CrossRef] [PubMed] [Google Scholar]
  5. Le Magueresse-Battistoni B, Vidal H, Naville D. Lifelong consumption of low-dosed food pollutants and metabolic health. J Epidemiol Community Health 2015 ; 69 : 512–515. [CrossRef] [PubMed] [Google Scholar]
  6. WHO. Obesity and Overweight. WHO, 2014: Fact sheet 311. http://www.whoint/mediacentre/factsheets/fs311/en/. [Google Scholar]
  7. De Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 2010 ; 9 2: 1257–1264. [CrossRef] [PubMed] [Google Scholar]
  8. Legler J, Fletcher T, Govarts E, et al. Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015 ; 100 : 1278–1288. [CrossRef] [PubMed] [Google Scholar]
  9. Cravedi JP, Zalko D, Savouret JF, et al. Le concept de perturbation endocrinienne et la santé humaine. Med Sci (Paris) 2007 ; 23 : 198–204. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 2013 ; 34 : 309–338. [CrossRef] [PubMed] [Google Scholar]
  11. Vandenberg LN, Colborn T, Hayes TB, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012 ; 33 : 378–455. [CrossRef] [PubMed] [Google Scholar]
  12. Barouki R, Gluckman PD, Grandjean P, et al. Developmental origins of non-communicable disease: implications for research and public health. Environ Health 2012 ; 11 : 42. [CrossRef] [PubMed] [Google Scholar]
  13. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002 ; 31 : 1235–1239. [CrossRef] [PubMed] [Google Scholar]
  14. Lee DH, Lee IK, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care 2006 ; 29 : 1638–1644. [CrossRef] [PubMed] [Google Scholar]
  15. Milbrath MO, Wenger Y, Chang CW, et al. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environ Health Perspect 2009 ; 117 : 417–425. [CrossRef] [PubMed] [Google Scholar]
  16. Grun F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord 2007 ; 8 : 161–171. [CrossRef] [PubMed] [Google Scholar]
  17. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002 ; 8 : 185–192. [CrossRef] [PubMed] [Google Scholar]
  18. Kirchner S, Kieu T, Chow C, et al. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol 2010 ; 24 : 526–539. [CrossRef] [PubMed] [Google Scholar]
  19. Chamorro-Garcia R, Sahu M, Abbey RJ, et al. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect 2013 ; 121 : 359–366. [CrossRef] [PubMed] [Google Scholar]
  20. Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 2014 ; 398 : 4–12. [CrossRef] [PubMed] [Google Scholar]
  21. Bastos Sales L, Kamstra JH, Cenijn PH, et al. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation. Toxicol In Vitro 2013; 27 : 1634–1643. [CrossRef] [PubMed] [Google Scholar]
  22. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol 2005 ; 73 : 478–480. [CrossRef] [PubMed] [Google Scholar]
  23. Verhulst SL, Nelen V, Hond ED, et al. Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life. Environ Health Perspect 2009 ; 117 : 122–126. [CrossRef] [PubMed] [Google Scholar]
  24. Dang ZC, Lowik C. Dose-dependent effects of phytoestrogens on bone. Trends Endocrinol Metab 2005 ; 16 : 207–213. [CrossRef] [PubMed] [Google Scholar]
  25. Yoon M. PPARalpha in obesity: Sex difference and estrogen involvement. PPAR Res 2010 ; 2010 : 584296. [CrossRef] [PubMed] [Google Scholar]
  26. Tohme M, Prud’homme SM, Boulahtouf A, et al. Estrogen-related receptor gamma is an in vivo receptor of bisphenol A. FASEB J 2014 ; 28 : 3124–3133. [CrossRef] [PubMed] [Google Scholar]
  27. Frederiksen H, Nielsen JK, Morck TA, et al. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother-child pairs. Int J Hyg Environ Health 2013 ; 216 : 772–783. [CrossRef] [PubMed] [Google Scholar]
  28. Rantakokko P, Main KM, Wohlfart-Veje C, et al. Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study. Environ Health 2014 ; 13 : 45. [CrossRef] [PubMed] [Google Scholar]
  29. De Cock M, van de Bor M. Obesogenic effects of endocrine disruptors, what do we know from animal and human studies? Environ Int 2014 ; 70 : 15–24. [CrossRef] [PubMed] [Google Scholar]
  30. Valvi D, Mendez MA, Martinez D, et al. Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: a prospective birth cohort study. Environ Health Perspect 2012 ; 120 : 451–457. [CrossRef] [PubMed] [Google Scholar]
  31. Warner M, Wesselink A, Harley KG, et al. Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the Chamacos study cohort. Am J Epidemiol 2014 ; 179 : 1312–1322. [CrossRef] [PubMed] [Google Scholar]
  32. Naville D, Pinteur C, Vega N, et al. Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J 2013 ; 27 : 3860–3870. [CrossRef] [PubMed] [Google Scholar]
  33. Mauduit C, Siddeek B, Benahmed M. Origine développementale et environnementale de l’infertilité : rôle des perturbateurs hormonaux. Med Sci (Paris) 2016 ; 32 : 45–50. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.