Free Access
Med Sci (Paris)
Volume 32, Number 1, Janvier 2016
Origine développementale de la santé et des maladies (DOHaD), environnement et épigénétique
Page(s) 57 - 65
Section M/S Revues
Published online 05 February 2016
  1. Chavatte-Palmer P, Debus N, Dupont C, Camous S. Nutritional programming and the reproductive function of the offspring. Anim Prod Sci 2014 ; 54 : 1166–1176. [Google Scholar]
  2. Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 2012 ; 90 : 175–200. [CrossRef] [PubMed] [Google Scholar]
  3. MacDonald WA, Mann MR. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 2014 ; 81 : 126–140. [CrossRef] [PubMed] [Google Scholar]
  4. Smallwood SA, Kelsey G. De novo DNA methylation: a germ cell perspective. Trends Genet 2012 ; 28 : 33–42. [CrossRef] [PubMed] [Google Scholar]
  5. Gabory A, Dandolo L. Épigénétique et développement : l’empreinte parentale. Med Sci (Paris) 2005 ; 21 : 390–395. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Beaujean N. Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol Reprod Dev 2014 ; 81 : 100–112. [CrossRef] [PubMed] [Google Scholar]
  7. Inoue A, Zhang Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat Struct Mol Biol 2014 ; 21 : 609–616. [CrossRef] [PubMed] [Google Scholar]
  8. Montellier E, Boussouar F, Rousseaux S, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 2013 ; 27 : 1680–1692. [CrossRef] [PubMed] [Google Scholar]
  9. Rousseaux S, Petosa C, Muller CW, Khochbin S. Du nouveau dans la compréhension de la reprogrammation postméiotique du génome mâle. Med Sci (Paris) 2010 ; 26 : 130–132. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos. Nature 2014 ; 511 : 606–610. [CrossRef] [PubMed] [Google Scholar]
  11. Wang L, Zhang J, Duan J, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 2014 ; 157 : 979–991. [CrossRef] [PubMed] [Google Scholar]
  12. Okae H, Chiba H, Hiura H, et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet 2014 ; 10 : e1004868. [CrossRef] [PubMed] [Google Scholar]
  13. Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the human preimplantation embryo. Nature 2014 ; 511 : 611–615. [CrossRef] [PubMed] [Google Scholar]
  14. Market-Velker BA, Fernandes AD, Mann MR. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 2010 ; 83 : 938–950. [CrossRef] [PubMed] [Google Scholar]
  15. van de Werken C, van der Heijden GW, Eleveld C, et al. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nat Commun 2014 ; 5 : 5868. [CrossRef] [PubMed] [Google Scholar]
  16. Reis e Silva AR, Bruno C, Fleurot R, et al. Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 2012; 7 : 440–446. [CrossRef] [PubMed] [Google Scholar]
  17. Morgan HD, Jin XL, Li A, et al. The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod 2008 ; 79 : 618–623. [CrossRef] [PubMed] [Google Scholar]
  18. Melamed N, Choufani S, Wilkins-Haug LE, et al. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 2015 ; 10 : 474–483. [CrossRef] [PubMed] [Google Scholar]
  19. Turan N, Katari S, Gerson LF, et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010 ; 6 : e1001033. [CrossRef] [PubMed] [Google Scholar]
  20. Gad A, Schellander K, Hoelker M, Tesfaye D. Transcriptome profile of early mammalian embryos in response to culture environment. Anim Reprod Sci 2012 ; 134 : 76–83. [CrossRef] [PubMed] [Google Scholar]
  21. Roseboom TJ, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006 ; 82 : 485–491. [CrossRef] [PubMed] [Google Scholar]
  22. Painter RC, Roseboom TJ, Bossuyt PM, et al. Adult mortality at age 57 after prenatal exposure to the Dutch famine. Eur J Epidemiol 2005 ; 20 : 673–676. [CrossRef] [PubMed] [Google Scholar]
  23. Diouf I, Charles MA, Thiébaugeorges O, et al. Maternal weight change before pregnancy in relation to birthweight and risks of adverse pregnancy outcomes. Eur J Epidemiol 2011 ; 26 : 789–796. [CrossRef] [PubMed] [Google Scholar]
  24. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 2013 ; 19 : 640–655. [CrossRef] [PubMed] [Google Scholar]
  25. Watkins A, Lucas ES, Fleming T. Impact of the periconceptional environment on the programming of adult disease. J Dev Orig Health Dis 2010 ; 1 : 1–9. [CrossRef] [Google Scholar]
  26. Williams CL, Teeling JL, Perry VH, Fleming TP. Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biology 2011 ; 9 : [Google Scholar]
  27. Laguna-Barraza R, Bermejo-Alvarez P, Ramos-Ibeas P, et al. Sex-specific embryonic origin of postnatal phenotypic variability. Reprod Fertil Dev 2012 ; 25 : 38–47. [CrossRef] [PubMed] [Google Scholar]
  28. Fleming TP, Velazquez MA, Eckert JJ, et al. Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci 2012 ; 130 : 193–197. [CrossRef] [PubMed] [Google Scholar]
  29. Tarrade A, Rousseau-Ralliard D, Aubrière MC, et al. Sexual dimorphism of the feto-placental phenotype in response to a high fat and control maternal diets in a rabbit model. PLoS One 2013 ; 8 : e83458. [CrossRef] [PubMed] [Google Scholar]
  30. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 2014 ; 36 : 359–371. [CrossRef] [PubMed] [Google Scholar]
  31. Ng SF, Lin RC, Laybutt DR, et al. Chronic high-fat diet in fathers programs b-cell dysfunction in female rat offspring. Nature 2010 ; 467 : 963–967. [CrossRef] [PubMed] [Google Scholar]
  32. Carone BR, Fauquier L, Habib N, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010 ; 143 : 1084–1096. [CrossRef] [PubMed] [Google Scholar]
  33. Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 2013 ; 27 : 4226–4243. [CrossRef] [PubMed] [Google Scholar]
  34. Fullston T, McPherson NO, Owens JA, et al. Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an obesogenic diet. Physiol Rep 2015; 3 : pii–e12336. [CrossRef] [Google Scholar]
  35. Fullston T, Palmer NO, Owens JA, et al. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod 2012 ; 27 : 1391–1400. [CrossRef] [PubMed] [Google Scholar]
  36. Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod 1998 ; 3 : 155–163. [CrossRef] [PubMed] [Google Scholar]
  37. Sunderam S, Kissin DM, Crawford SB, et al. Assisted reproductive technology surveillance - United States, 2012. MMWR Surveill Summ 2015 ; 64 : 1–29. [Google Scholar]
  38. Kleijkers SH, van Montfoort AP, Smits LJ, et al. IVF culture medium affects post-natal weight in humans during the first 2 years of life. Hum Reprod 2014 ; 29 : 661–669. [CrossRef] [PubMed] [Google Scholar]
  39. Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment. Part I. General health outcomes. Hum Reprod Update 2013 ; 19 : 232–243. [CrossRef] [PubMed] [Google Scholar]
  40. Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment. Part II. Mental health and development outcomes. Hum Reprod Update 2013 ; 19 : 244–250. [CrossRef] [PubMed] [Google Scholar]
  41. Kallen B, Finnstrom O, Lindam A, et al. Cancer risk in children and young adults conceived by in vitro fertilization. Pediatrics 2010 ; 126 : 270–276. [CrossRef] [PubMed] [Google Scholar]
  42. Katari S, Turan N, Bibikova M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 2009 ; 18 : 3769–3778. [CrossRef] [PubMed] [Google Scholar]
  43. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod 2008 ; 23 : 2826–2834. [CrossRef] [PubMed] [Google Scholar]
  44. Market-Velker BA, Zhang L, Magri LS, et al. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010 ; 19 : 36–51. [CrossRef] [PubMed] [Google Scholar]
  45. Van Montfoort AP, Hanssen LL, de Sutter P, et al. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012 ; 18 : 171–197. [CrossRef] [PubMed] [Google Scholar]
  46. Lavara R, Baselga M, Marco-Jiménez F, Vicente JS. Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology 2014 ; 81 : 988–992. [CrossRef] [PubMed] [Google Scholar]
  47. Saenz-de-Juano MD, Marco-Jimenez F, Schmaltz-Panneau B, et al. Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. Reproduction 2014 ; 147 : 789–801. [CrossRef] [PubMed] [Google Scholar]
  48. Painter RC, Osmond C, Gluckman P, et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008 ; 115 : 1243–1249. [CrossRef] [PubMed] [Google Scholar]
  49. Veenendaal M, Painter R, de Rooij S, et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 2013 ; 120 : 548–554. [CrossRef] [PubMed] [Google Scholar]
  50. Bygren LO, Tinghog P, Carstensen J, et al. Change in paternal grandmothers’ early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet 2014 ; 15 : 12. [CrossRef] [PubMed] [Google Scholar]
  51. Junquero D, Rival Y. Syndrome métabolique : quelle définition pour quel(s) traitement(s) ? Med Sci (Paris) 2005 ; 21 : 1045–1053. [EDP Sciences] [PubMed] [Google Scholar]
  52. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 2009 ; 58 : 460–468. [CrossRef] [PubMed] [Google Scholar]
  53. Martinez D, Pentinat T, Ribo S, et al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered lxra DNA methylation. Cell Metab 2014 ; 19 : 941–951. [CrossRef] [PubMed] [Google Scholar]
  54. Junien C, Gabory A, Attig L. Le dimorphisme sexuel au XXIe siècle. Med Sci (Paris) 2012 ; 28 : 185–192. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.