Free Access
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Page(s) 777 - 783
Section M/S Revues
Published online 04 September 2015
  1. Coron E, Flamant M, Aubert P, et al. Characterisation of early mucosal and neuronal lesions following Shigella flexneri infection in human colon. PLoS One 2009 ; 4 : e4713. [CrossRef] [PubMed] [Google Scholar]
  2. Coron E, Robaszkiewicz M, Chatelain D, et al. Advanced precancerous lesions in the lower oesophageal mucosa: high-grade dysplasia and intramucosal carcinoma in Barrett’s oesophagus. Best Pract Res Clin Gastroenterol 2013 ; 27 : 187–204. [Google Scholar]
  3. Gora MJ, Sauk JS, Carruth RW, et al. Imaging the upper gastrointestinal tract in unsedated patients using tethered capsule endomicroscopy. Gastroenterology 2013 ; 145 : 723–725. [CrossRef] [PubMed] [Google Scholar]
  4. Gora MJ, Sauk JS, Carruth RW, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med 2013 ; 19 : 238–240. [CrossRef] [PubMed] [Google Scholar]
  5. Sauk J, Coron E, Kava L, et al. Interobserver agreement for the detection of Barrett’s esophagus with optical frequency domain imaging. Dig Dis Sci 2013 ; 58 : 2261–2265. [CrossRef] [PubMed] [Google Scholar]
  6. Suter MJ, Gora MJ, Lauwers GY, et al. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study. Gastrointest Endosc 2014 ; 79 : 886–896. [CrossRef] [PubMed] [Google Scholar]
  7. Sharma P, Meining AR, Coron E, et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc 2011 ; 74 : 465–472. [CrossRef] [PubMed] [Google Scholar]
  8. Canto MI, Anandasabapathy S, Brugge W, et al. In vivo endomicroscopy improves detection of Barrett’s esophagus–related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest Endosc 2014 ; 79 : 211–221. [CrossRef] [PubMed] [Google Scholar]
  9. Wallace MB, Sharma P, Lightdale C, et al. Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett’s esophagus with probe-based confocal laser endomicroscopy. Gastrointest Endosc 2010 ; 72 : 19–24. [CrossRef] [PubMed] [Google Scholar]
  10. Peyrin-Biroulet L, Ferrante M, Magro F, et al. Results from the 2nd scientific workshop of the ECCO. I: impact of mucosal healing on the course of inflammatory bowel disease. J Crohns Colitis 2011 ; 5 : 477–483. [CrossRef] [PubMed] [Google Scholar]
  11. Musquer N, Coquenlorge S, Bourreille A, et al. Probe-based confocal laser endomicroscopy: a new method for quantitative analysis of pit structure in healthy and Crohn’s disease patients. Dig Liver Dis 2013 ; 45 : 487–492. [CrossRef] [PubMed] [Google Scholar]
  12. Kiesslich R, Goetz M, Lammersdorf K, et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 2007 ; 132 : 874–882. [CrossRef] [PubMed] [Google Scholar]
  13. Lim LG, Neumann J, Hansen T, et al. Confocal endomicroscopy identifies loss of local barrier function in the duodenum of patients with Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 2014 ; 20 : 892–900. [CrossRef] [PubMed] [Google Scholar]
  14. Kiesslich R, Duckworth CA, Moussata D, et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 2012 ; 61 : 1146–1153. [CrossRef] [PubMed] [Google Scholar]
  15. Atreya R, Neumann H, Neufert C, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 2014 ; 20 : 313–318. [CrossRef] [PubMed] [Google Scholar]
  16. Coron E, Laurent V, Malard F, et al. Early detection of acute graft-versus-host disease by wireless capsule endoscopy and probe-based confocal laser endo-microscopy: results of a pilot study. United Eur Gastroenterol J 2014 ; 2 : 206–215. [CrossRef] [Google Scholar]
  17. Neunlist M, Van Landeghem L, Mahé MM, et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 2012 ; 10 : 90–100. [CrossRef] [PubMed] [Google Scholar]
  18. Lebouvier T, Neunlist MBruley des Varannes S,et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 2010 ; 5 : e12728. [CrossRef] [PubMed] [Google Scholar]
  19. Lebouvier T, Coron E, Chaumette T, et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc 2010 ; 22 : e11–e14. [Google Scholar]
  20. Neunlist M, Coquenlorge S, Aubert P, et al. Colonic endoscopic full-thickness biopsies: from the neuropathological analysis of the myenteric plexus to the functional study of neuromuscular transmission. Gastrointest Endosc 2011 ; 73 : 1029–1034. [CrossRef] [PubMed] [Google Scholar]
  21. Auksorius E, Bromberg YMotiejunait˙e R, et al. Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications. Biomed Opt Express 2012 ; 3 : 661. [CrossRef] [PubMed] [Google Scholar]
  22. Coron E, Auksorius E, Pieretti A, et al. Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract: FFOCM imaging of enteric ganglia. Neurogastroenterol Motil 2012 ; 24 : e611–e621. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.