Free Access
Issue
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Page(s) 770 - 776
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108016
Published online 04 September 2015
  1. Nichols M, Townsend N, Luengo-Fernandez R, et al. European cardiovascular disease statistics 2012. Brussels : European Heart Network. Sophia Antipolis : European Society of Cardiology, 2012. [Google Scholar]
  2. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007 ; 93 : 1137–1146. [CrossRef] [PubMed] [Google Scholar]
  3. Jhund PS, Macintyre K, Simpson CR, et al. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation 2009 ; 119 : 515–523. [CrossRef] [PubMed] [Google Scholar]
  4. Roger VL. Epidemiology of heart failure. Circ Res 2013 ; 113 : 646–659. [CrossRef] [PubMed] [Google Scholar]
  5. De Groote P, Millaire A, Foucher-Hossein C, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 1998 ; 32 : 948–954. [CrossRef] [PubMed] [Google Scholar]
  6. De Groote P, Fertin M, Goéminne C, et al. Right ventricular systolic function for risk stratification in patients with stable left ventricular systolic dysfunction: comparison of radionuclide angiography to echoDoppler parameters. Eur Heart J 2012 ; 33 : 2672–2679. [CrossRef] [PubMed] [Google Scholar]
  7. Lee DS, Vasan RS. Novel markers for heart failure diagnosis and prognosis. Curr Opin Cardiol 2005 ; 20 : 201–210. [CrossRef] [PubMed] [Google Scholar]
  8. De Groote P, Dagorn J, Soudan B, et al. B-type natriuretic peptide and peak exercise oxygen consumption provide independent information for risk stratification in patients with stable congestive heart failure. J Am Coll Cardiol 2004 ; 43 : 1584–1589. [CrossRef] [PubMed] [Google Scholar]
  9. Braunwald E. Biomarkers in heart failure. N Engl J Med 2008 ; 358 : 2148–2250. [CrossRef] [PubMed] [Google Scholar]
  10. Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res 2013 ; 113 : 676–689. [CrossRef] [PubMed] [Google Scholar]
  11. Braunwald E. Research advances in heart failure. Circ Res 2013 ; 113 : 633–645. [CrossRef] [PubMed] [Google Scholar]
  12. Tong YK, Lo YM. Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chem Acta 2006 ; 363 : 187–196. [CrossRef] [PubMed] [Google Scholar]
  13. Fertin M, Hennache B, Hamon M, et al. Usefulness of serial assessment of B-type natriuretic peptide, troponin I, and C-reactive protein to predict left ventricular remodeling after acute myocardial infarction (from the REVE-2 study). Am J Cardiol 2010 ; 106 : 1410–1416. [CrossRef] [PubMed] [Google Scholar]
  14. Bauters C, Kumarswamy R, Holzmann A, et al. Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction. Int J Cardiol 2013 ; 168 : 1837–1840. [CrossRef] [PubMed] [Google Scholar]
  15. Jacobs L, Thijs L, Jin Y, et al. Heart omics in AGEing (HOMAGE): design, research objectives and characteristics of the common database. J Biomed Res 2014 ; 28 : 349–359. [PubMed] [Google Scholar]
  16. Baulande S, Criqui A. Duthieuw. Les microARN circulants, une nouvelle classe de biomarqueurs pour la médecine. Med Sci (Paris) 2014 ; 30 : 289–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Mathieu EL, Belhocine M, Dao LTM, et al. Rôle des longs ARN non codants dans le développement normal et pathologique. Med Sci (Paris) 2014 ; 30 : 790–796. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Kung JTY, Colognori D, Lee JT. Long non coding RNAs: past, present, and future. Genetics 2013 ; 193 : 651–669. [CrossRef] [PubMed] [Google Scholar]
  19. Derrien T, Johnson R, Bussotti G, et al. The Gencode v7 catalog of human long non coding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012 ; 22 : 1775–1789. [CrossRef] [PubMed] [Google Scholar]
  20. Thum T. Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 2014 ; 11 : 655–663. [CrossRef] [PubMed] [Google Scholar]
  21. Dubois E, Fertin M, Burdese J, et al. Cardiovascular proteomics: translational study to develop novel biomarkers in heart failure and left ventricular remodeling. Proteomics Clin Appl 2011 ; 5 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  22. Savoye C, Equine O, Tricot O, et al. Left ventricular remodeling after anterior wall acute myocardial infarction in modern clinical practice (from the REmodelage VEntriculaire [REVE] study group). Am J Cardiol 2006 ; 98 : 1144–1149. [CrossRef] [PubMed] [Google Scholar]
  23. Fertin M, Dubois E, Belliard A, et al. Usefulness of circulating biomarkers for the prediction of left ventricular remodeling after myocardial infarction. Am J Cardiol 2012 ; 110 : 277–283. [CrossRef] [PubMed] [Google Scholar]
  24. Kumarswamy R, Bauters C, Volkmann I, et al. The circulating long non-coding LIPCAR predicts survival in heart failure patients. Circ Res 2014 ; 114 : 1569–1575. [CrossRef] [PubMed] [Google Scholar]
  25. Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 2014 ; 129 : 1009–1021. [CrossRef] [PubMed] [Google Scholar]
  26. Ounzain S, Micheletti R, Beckmann T, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 2015 ; 36 : 353–368. [CrossRef] [PubMed] [Google Scholar]
  27. Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 2014 ; 114 : 1377–1388. [CrossRef] [PubMed] [Google Scholar]
  28. Vausort M, Wagner DR, Devaux Y. Long non-coding RNAs in patients with acute myocardial infarction. Circ Res 2014 ; 115 : 668–677. [CrossRef] [PubMed] [Google Scholar]
  29. Matkovich SJ, Edwards JR, Grossenheider TC, et al. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 2014 ; 111 : 12264–12269. [CrossRef] [Google Scholar]
  30. Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 2014 ; 514 : 102–106. [CrossRef] [PubMed] [Google Scholar]
  31. Dorn GW. LIPCAR: a mitochondrial lnc in the noncoding RNA chain? Circ Res 2014 ; 114 : 1548–1550. [CrossRef] [PubMed] [Google Scholar]
  32. Lemesle G, Maury F, Beseme O, et al. Multi-marker proteomic profiling for the prediction of cardiovascular mortality in patients with chronic heart failure. PLoS One 2015 ; 10 : e0119265. [CrossRef] [PubMed] [Google Scholar]
  33. Gustafsson M, Nestor CE, Zhang H, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med 2014 ; 6 : 82. [CrossRef] [PubMed] [Google Scholar]
  34. Bateman S. Médecine personnalisée : un concept flou, des pratiques diversifiées. Med Sci (Paris) 2014 ; 30 : 8–13. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Le Pedrazzini T. cœur des ARN non codants : un long chemin à découvrir. Med Sci (Paris) 2015 ; 31 : 261–267. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  36. Ladeiro Y, Zucman-Rossi J. Micro-ARN (miARN) et cancer : le cas des tumeurs hépatocellulaires. Med Sci (Paris) 2009 ; 25 : 467–472. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  37. Gougelet A, Colnot S. Les microARN dans le cancer du foie à l’orée de nouvelles thérapies ciblées ? Med Sci (Paris) 2013 ; 29 : 861–867. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Billaud M, Guchet X. L’invention de la médecine personnalisée : entre mutations technologiques et utopie. Med Sci (Paris) 2015 ; 31 : 797–803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.