Addictions
Free Access
Issue
Med Sci (Paris)
Volume 31, Number 8-9, Août–Septembre 2015
Addictions
Page(s) 784 - 791
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153108018
Published online 04 September 2015
  1. Volkow ND, Wang GJ, Fowler JS, et al. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays 2010 ; 32 : 748–755. [CrossRef] [PubMed] [Google Scholar]
  2. Reuter J, Raedler T, Rose M, et al. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 2005 ; 8 : 147–148. [CrossRef] [PubMed] [Google Scholar]
  3. Clark L, Stokes PR, Wu K, et al. Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage 2012 ; 63 : 40–46. [CrossRef] [PubMed] [Google Scholar]
  4. Sescousse G, Barbalat G, Domenech P, Dreher JC. Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain 2013 ; 136 : 2527–2538. [CrossRef] [PubMed] [Google Scholar]
  5. Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci 2010 ; 30 : 6180–6187. [CrossRef] [PubMed] [Google Scholar]
  6. De Ruiter MB, Veltman DJ, Goudriaan AE, et al. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 2009 ; 34 : 1027–1038. [CrossRef] [PubMed] [Google Scholar]
  7. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th ed. Washington, DC : American Psychiatric Association, 2013. [Google Scholar]
  8. Welte JW, Barnes GM, Tidwell MC, et al. Gambling and problem gambling in the United States: changes between 1999 and 2013. J Gambl Stud 2014 ; doi : 10.1007/s10899-014-9471-4. [Google Scholar]
  9. Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National epidemiologic survey on alcohol and related conditions. J Clin Psychiatry 2005 ; 66 : 564–574. [CrossRef] [PubMed] [Google Scholar]
  10. Goudriaan AE, Oosterlaan J, de Beurs E, Van den Brink W. Pathological gambling: a comprehensive review of biobehavioral findings. Neurosci Biobehav Rev 2004 ; 28 : 123–141. [CrossRef] [PubMed] [Google Scholar]
  11. Slutske WS, Eisen S, True WR, et al. Common genetic vulnerability for pathological gambling and alcohol dependence in men. Arch Gen Psychiatry 2000 ; 57 : 666–673. [CrossRef] [PubMed] [Google Scholar]
  12. Eisen SA, Slutskte WS, Lyons MJ, et al. The genetics of pathological gambling. Semin Clin Neuropsychiatry 2001 ; 6 : 195–204. [CrossRef] [PubMed] [Google Scholar]
  13. Volkow ND, Wang GJ, Fowler JS, et al. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 2011 ; 108 : 15037–15042. [CrossRef] [Google Scholar]
  14. Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog Brain Res 2000 ; 126 : 325–341. [CrossRef] [PubMed] [Google Scholar]
  15. Linnet J, Møller A, Peterson E, et al. Dopamine release in ventral striatum during Iowa gambling task performance is associated with increased excitement levels in pathological gambling. Addiction 2011 ; 106 : 383–390. [CrossRef] [PubMed] [Google Scholar]
  16. Joutsa J, Johansson J, Niemelä S, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage 2012 ; 60 : 1992–1999. [CrossRef] [PubMed] [Google Scholar]
  17. Boileau I, Payer D, Chugani B, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction 2013 ; 108 : 953–963. [CrossRef] [PubMed] [Google Scholar]
  18. Boileau I, Payer D, Chugani B, et al. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11C]-(+)-PHNO. Mol Psychiatry 2014 ; 19 : 1305–1313. [CrossRef] [PubMed] [Google Scholar]
  19. Zack M, Poulos CX. Amphetamine primes motivation to gamble and gambling-related semantic networks in problem gamblers. Neuropsychopharmacology 2004 ; 29 : 195–207. [CrossRef] [PubMed] [Google Scholar]
  20. Zack M, Poulos CX. A D2 antagonist enhances the rewarding and priming effects of a gambling episode in pathological gamblers. Neuropsychopharmacology 2007 ; 32 : 1678–1686. [CrossRef] [PubMed] [Google Scholar]
  21. Clark L. Decision-making during gambling: an integration of cognitive and psychobiological approaches. Philos Trans R Soc Lond B Biol Sci 2010 ; 365 : 319–330. [CrossRef] [PubMed] [Google Scholar]
  22. Dodd ML, Klos KJ, Bower JH, et al. Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 2005 ; 62 : 1377–1381. [CrossRef] [PubMed] [Google Scholar]
  23. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010 ; 67 : 589–595. [CrossRef] [PubMed] [Google Scholar]
  24. Dagher A, Robbins TW. Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron 2009 ; 61 : 502–510. [CrossRef] [PubMed] [Google Scholar]
  25. Potenza MN. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc Lond B Biol Sci 2008 ; 363 : 3181–3189. [CrossRef] [PubMed] [Google Scholar]
  26. Grant JE, Kim SW, Hollander E, Potenza MN. Predicting response to opiate antagonists and placebo in the treatment of pathological gambling. Psychopharmacology 2008 ; 200 : 521–527. [CrossRef] [PubMed] [Google Scholar]
  27. Grant JE, Odlaug BL, Potenza MN, et al. Nalmefene in the treatment of pathological gambling: multicentre, double-blind, placebo-controlled study. Br J Psychiatry 2010 ; 197 : 330–331. [CrossRef] [PubMed] [Google Scholar]
  28. Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacology 2012 ; 219 : 469–490. [CrossRef] [PubMed] [Google Scholar]
  29. Grant JE, Chamberlain SR, Odlaug BL, et al. Memantine shows promise in reducing gambling severity and cognitive inflexibility in pathological gambling: a pilot study. Psychopharmacology 2010 ; 212 : 603–612. [CrossRef] [PubMed] [Google Scholar]
  30. Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007 ; 62 : 652–657. [CrossRef] [PubMed] [Google Scholar]
  31. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009 ; 10 : 561–572. [CrossRef] [PubMed] [Google Scholar]
  32. Van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev 2010 ; 34 : 87–107. [CrossRef] [PubMed] [Google Scholar]
  33. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994 ; 50 : 7–15. [CrossRef] [PubMed] [Google Scholar]
  34. Cavedini P, Riboldi G, Keller R, et al. Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry 2002 ; 51 : 334–341. [CrossRef] [PubMed] [Google Scholar]
  35. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Neurocognitive functions in pathological gambling: a comparison with alcohol dependence. Tourette syndrome and normal controls. Addiction 2006 ; 101 : 534–547. [Google Scholar]
  36. Roca M, Torralva T, López P, et al. Executive functions in pathologic gamblers selected in an ecologic setting. Cogn Behav Neurol 2008 ; 21 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  37. Lakey CE, Goodie AS, Campbell WK. Frequent card playing and pathological gambling: the utility of the Georgia gambling task and Iowa gambling task for predicting pathology. J Gambl Stud 2007 ; 23 : 285–297. [CrossRef] [PubMed] [Google Scholar]
  38. Clark L, Cools R, Robbins TW. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 2004 ; 55 : 41–53. [CrossRef] [PubMed] [Google Scholar]
  39. Brand M, Kalbe E, Labudda K, et al. Decision-making impairments in patients with pathological gambling. Psychiatry Res 2005 ; 133 : 91–99. [CrossRef] [PubMed] [Google Scholar]
  40. Lawrence AJ, Luty J, Bogdan NA, et al. Problem gamblers share deficits in impulsive decision-making with alcohol-dependent individuals. Addiction 2009 ; 104 : 1006–1015. [CrossRef] [PubMed] [Google Scholar]
  41. Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res 2010 ; 181 : 165–173. [CrossRef] [PubMed] [Google Scholar]
  42. Hewig J, Kretschmer N, Trippe RH, et al. Hypersensitivity to reward in problem gamblers. Biol Psychiatry 2010 ; 67 : 781–783. [CrossRef] [PubMed] [Google Scholar]
  43. Oberg SA, Christie GJ, Tata MS. Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia 2011 ; 49 : 3768–3775. [CrossRef] [PubMed] [Google Scholar]
  44. Balodis IM, Kober H, Worhunsky PD, et al. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 2012 ; 71 : 749–757. [CrossRef] [PubMed] [Google Scholar]
  45. Van Holst RJ, Veltman DJ, Büchel C, et al. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry 2012 ; 71 : 741–748. [CrossRef] [PubMed] [Google Scholar]
  46. Hommer DW, Bjork JM, Gilman JM. Imaging brain response to reward in addictive disorders. Ann NY Acad Sci 2011 ; 1216 : 50–61. [CrossRef] [Google Scholar]
  47. Leyton M, Vezina P. On cue: striatal ups and downs in addictions. Biol Psychiatry 2012 ; 72 : e21. [CrossRef] [PubMed] [Google Scholar]
  48. Schultz W. Multiple reward signals in the brain. Nat Rev Neurosci 2000 ; 1 : 199–207. [CrossRef] [PubMed] [Google Scholar]
  49. Voon V, Pessiglione M, Brezing C, et al. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 2010 ; 65 : 135–142. [CrossRef] [PubMed] [Google Scholar]
  50. Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 2009 ; 61 : 481–490. [CrossRef] [PubMed] [Google Scholar]
  51. Potenza MN, Steinberg MA, Skudlarski P, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 2003 ; 60 : 828–836. [CrossRef] [PubMed] [Google Scholar]
  52. Garavan H, Pankiewicz J, Bloom A, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000 ; 157 : 1789–1798. [CrossRef] [PubMed] [Google Scholar]
  53. David SP, Munafò MR, Johansen-Berg H, et al. Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 2005 ; 58 : 488–494. [CrossRef] [PubMed] [Google Scholar]
  54. Goudriaan AE, de Ruiter MB, van den Brink W, et al. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol 2010 ; 15 : 491–503. [CrossRef] [PubMed] [Google Scholar]
  55. Crockford DN, Goodtear B, Edwards J, et al. Cue-induced brain activity in pathological gamblers. Biol Psychiatry 2005 ; 58 : 787–795. [CrossRef] [PubMed] [Google Scholar]
  56. Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the Iowa gambling task: an fMRI study. J Gambl Stud 2012 ; 28 : 623–636. [CrossRef] [PubMed] [Google Scholar]
  57. Sescousse G, den Ouden HE. Gambling rats and gambling addiction: reconciling the role of dopamine in irrationality. J Neurosci 2013 ; 33 : 3256–3258. [CrossRef] [PubMed] [Google Scholar]
  58. Milosevic A, Ledgerwood DM. The subtyping of pathological gambling: a comprehensive review. Clin Psychol Rev 2010 ; 30 : 988–998. [CrossRef] [PubMed] [Google Scholar]
  59. Wilson SJ, Smyth JM, Maclean RR. Integrating ecological momentary assessment and functional brain imaging methods: new avenues for studying and treating tobacco dependence. Nicotine Tob Res 2013 ; 16 suppl 2 : S102–S110. [CrossRef] [PubMed] [Google Scholar]
  60. Ramoz N, Gorwood P. Les addictions sous l’angle de la génétique. Med Sci (Paris) 2015 ; 31 : 432–438. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.