Free Access
Issue
Med Sci (Paris)
Volume 31, Number 5, Mai 2015
Page(s) 529 - 537
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153105015
Published online 09 June 2015
  1. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010 ; 11 : 273–284. [CrossRef] [PubMed] [Google Scholar]
  2. Bainbridge JWB, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008 ; 358 : 2231–2239. [CrossRef] [PubMed] [Google Scholar]
  3. Cideciyan AV, Aleman TS, Boye SL, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008 ; 105 : 15112–15117. [CrossRef] [Google Scholar]
  4. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008 ; 358 : 2240–2248. [CrossRef] [PubMed] [Google Scholar]
  5. Maclaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 2014 ; 383 : 1129–1137. [CrossRef] [PubMed] [Google Scholar]
  6. Bainbridge JW, Ali RR. Success in sight: the eyes have it! Ocular gene therapy trials for LCA look promising. Gene Ther 2008 ; 15 : 1191–1192. [CrossRef] [PubMed] [Google Scholar]
  7. Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013 ; 34 : 7158–7167. [CrossRef] [PubMed] [Google Scholar]
  8. Vandenberghe LH, Auricchio A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 2012 ; 19 : 162–168. [CrossRef] [PubMed] [Google Scholar]
  9. Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci 2011 ; 52 : 3051–3059. [CrossRef] [PubMed] [Google Scholar]
  10. Bennett J, Wilson J, Sun D, et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci 1994 ; 35 : 2535–2542. [PubMed] [Google Scholar]
  11. Reichel MB, Ali RR, Thrasher AJ, et al. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 1998 ; 5 : 1038–1046. [CrossRef] [PubMed] [Google Scholar]
  12. Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001 ; 98 : 12584–12589. [CrossRef] [Google Scholar]
  13. Burcin MM, Schiedner G, Kochanek S, et al. Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA 1999 ; 96 : 355–360. [CrossRef] [Google Scholar]
  14. Balaggan KS, Ali RR. Ocular gene delivery using lentiviral vectors. Gene Ther 2012 ; 19 : 145–153. [CrossRef] [PubMed] [Google Scholar]
  15. Duisit G, Conrath H, Saleun S, et al. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol Ther 2002 ; 6 : 446–454. [CrossRef] [PubMed] [Google Scholar]
  16. Kachi S, Binley K, Yokoi K, et al. Equine infectious anemia viral vector-mediated codelivery of endostatin and angiostatin driven by retinal pigmented epithelium-specific VMD2 promoter inhibits choroidal neovascularization. Hum Gene Ther 2009 ; 20 : 31–39. [CrossRef] [PubMed] [Google Scholar]
  17. Bemelmans AP, Kostic C, Crippa SV, et al. Lentiviral gene transfer of Rpe65 rescues survival and function of cones in a mouse model of leber congenital amaurosis. PLoS Med 2006 ; 3 : 1892–1903. [CrossRef] [Google Scholar]
  18. Balaggan KS, Binley K, Esapa M, et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 2006 ; 8 : 275–285. [CrossRef] [PubMed] [Google Scholar]
  19. Lipinski D, Barnard A. Venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork. Hum Gene Ther 2013 ; 25 : 50–62. [CrossRef] [PubMed] [Google Scholar]
  20. Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci 2013 ; 54 : 4061–4071. [CrossRef] [PubMed] [Google Scholar]
  21. Hellström M, Ruitenberg MJ, Pollett MA, et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther 2009 ; 16 : 521–532. [CrossRef] [PubMed] [Google Scholar]
  22. Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007 ; 81 : 11372–11380. [CrossRef] [PubMed] [Google Scholar]
  23. Nathwani AC, Tuddenham EGD, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011 ; 365 : 2357–2365. [CrossRef] [PubMed] [Google Scholar]
  24. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000 ; 24 : 257–261. [CrossRef] [PubMed] [Google Scholar]
  25. Büning H, Perabo L, Coutelle O, et al. Recent developments in adeno-associated virus vector technology. J Gene Med 2008 ; 10 : 717–733. [CrossRef] [PubMed] [Google Scholar]
  26. Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012 ; 19 : 649–658. [CrossRef] [PubMed] [Google Scholar]
  27. Abraham D, Handler C, Dashwood M, Coghlan G. Advances in vascular medicine. Google eBook : Springer, 2010. http://books.google.com/books?id=EYp_Wa6CKtkC&pgis=1 [CrossRef] [Google Scholar]
  28. Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012 ; 19 : 649–658. [CrossRef] [PubMed] [Google Scholar]
  29. Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008 ; 105 : 7827–7832. [CrossRef] [Google Scholar]
  30. Kay CN, Ryals RC, Aslanidi GV, et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 2013 ; 8 : e62097. [CrossRef] [PubMed] [Google Scholar]
  31. Petrs-Silva H, Dinculescu A, Li Q, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011 ; 19 : 293–301. [CrossRef] [PubMed] [Google Scholar]
  32. Dalkara D, Byrne LLC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013 ; 5 : 189ra176. [CrossRef] [Google Scholar]
  33. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 2006 ; 24 : 198–204. [CrossRef] [PubMed] [Google Scholar]
  34. Müller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003 ; 21 : 1040–1046. [CrossRef] [PubMed] [Google Scholar]
  35. Klimczak RR, Koerber JT, Dalkara D, et al. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS One 2009 ; 4 : e7467. [CrossRef] [PubMed] [Google Scholar]
  36. Dalkara D, Kolstad KD, Guerin KI, et al. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol Ther 2011 ; 19 : 1602–1608. [CrossRef] [PubMed] [Google Scholar]
  37. Yin L, Greenberg K, Hunter JJ, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011 ; 52 : 2775–2783. [CrossRef] [PubMed] [Google Scholar]
  38. Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009 ; 17 : 2096–2102. [CrossRef] [PubMed] [Google Scholar]
  39. Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009 ; 17 : 463–471. [CrossRef] [PubMed] [Google Scholar]
  40. Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011 ; 19 : 1220–1229. [CrossRef] [PubMed] [Google Scholar]
  41. Dorrell MI, Aguilar E, Jacobson R, et al. Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J Clin Invest 2009 ; 119 : 611–623. [CrossRef] [PubMed] [Google Scholar]
  42. Koerber JT, Klimczak R, Jang JH, et al. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 2009 ; 17 : 2088–2095. [CrossRef] [PubMed] [Google Scholar]
  43. Auricchio A, Kobinger G, Anand V, et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001 ; 10 : 3075–3081. [CrossRef] [PubMed] [Google Scholar]
  44. Petrs-Silva H, Dinculescu A, Li Q, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2009 ; 19 : 293–301. [CrossRef] [PubMed] [Google Scholar]
  45. Natkunarajah M, Trittibach P, McIntosh J, et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther 2008 ; 15 : 463–467. [CrossRef] [PubMed] [Google Scholar]
  46. Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003 ; 7 : 774–781. [CrossRef] [PubMed] [Google Scholar]
  47. Allocca M, Doria M, Petrillo M, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008 ; 118 : 1955–1964. [CrossRef] [PubMed] [Google Scholar]
  48. Bennett J, Maguire AM, Cideciyan AV, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999 ; 96 : 9920–9925. [CrossRef] [Google Scholar]
  49. Vandenberghe LH, Bell P, Maguire AM, et al. AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 2013 ; 8 : e53463. [CrossRef] [PubMed] [Google Scholar]
  50. Yin L, Greenberg K, Hunter JJ, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011 ; 52 : 2775–2783. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.