Free Access
Issue
Med Sci (Paris)
Volume 31, Number 5, Mai 2015
Page(s) 506 - 514
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20153105012
Published online 09 June 2015
  1. Roizman B, Knipe DM, Whitley RJ. Herpes simplex viruses. In : Knipe DM, Howley PM, eds. Fields virology, 5th ed. Philadelphia : Lippincott Williams and Wilkins, 2007 : 2501–2602. [Google Scholar]
  2. Roizman B, Zhou G, Du T. Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues. J Neurovirol 2011 ; 17 : 512–517. [CrossRef] [PubMed] [Google Scholar]
  3. Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 1974 ; 14 : 8–19. [PubMed] [Google Scholar]
  4. Kent JR, Zeng PY, Atanasiu D, et al. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 2004 ; 78 : 10178–10186. [CrossRef] [PubMed] [Google Scholar]
  5. Herrera FJ, Triezemberg SJ. VP16-dependent association of chromatin–modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 2004 ; 78 : 9689–9696. [CrossRef] [PubMed] [Google Scholar]
  6. Kalamvoki M, Roizman B. The histone acetyl transferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27 and ICP22. J Virol 2011 ; 85 : 9472–9477. [CrossRef] [PubMed] [Google Scholar]
  7. Liang Y, Vogel JL, Narayanan A, et al. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 2009 ; 15 : 1312–1317. [CrossRef] [PubMed] [Google Scholar]
  8. Boutell C, Sadis S, Everett RD. Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 2002 ; 76 : 841–850. [CrossRef] [PubMed] [Google Scholar]
  9. Boutell C, Everett RD. Regulation of alphaherpesvirus infection by the ICP0 family of proteins. J Gen Virol 2013 ; 94 : 465–481. [CrossRef] [PubMed] [Google Scholar]
  10. Everett RD, Boutell C, Orr A. Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 2004 ; 78 : 1763–1774. [CrossRef] [PubMed] [Google Scholar]
  11. Everett RD. The role of ICP0 in counteracting intrinsic cellular resistance to virus infection. In : Weller KS, ed. Alphaherpesviruses: molecular virology. Norfolk UK : Caister Academic Press, 2011 : 39–50. [Google Scholar]
  12. Lomonte P, Thomas J, Texier P, et al. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 2004 ; 78 : 6744–6757. [CrossRef] [PubMed] [Google Scholar]
  13. Gross S, Catez F, Masumoto H, Lomonte P. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1. PLoS One 2012 ; 7 : e44227. [CrossRef] [PubMed] [Google Scholar]
  14. Lilley CE, Chaurushiya M, Boutell C, et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010 ; 29 : 943–955. [CrossRef] [PubMed] [Google Scholar]
  15. Zhou G, Du T, Roizman B. The role of the CoREST/REST repressonr complex in herpes simplex virus A productive infection and in latency. Viruses 2013 ; 5 : 1208–1218. [CrossRef] [PubMed] [Google Scholar]
  16. Roizman B, Sears AE. An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 1987 ; 41 : 543–571. [CrossRef] [PubMed] [Google Scholar]
  17. Hafezi W, Lorentzen EU, Eing BR, et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 2012 ; 8 : e1002679. [CrossRef] [PubMed] [Google Scholar]
  18. Kolb G, Kristie TM. Association of the cellular coactivator HCF1 with the Golgi apparatus in sensory neurons. J Virol 2008 ; 82 : 9555–9563. [CrossRef] [PubMed] [Google Scholar]
  19. Lakin ND, Palmer R, Lillycrop KA, et al. Down-regulation of the octamer binding protein Oct1 during growth arrest and differentiation of a neuronal cell line. Brain Res Mol Brain Res 1995 ; 28 : 47–54. [CrossRef] [PubMed] [Google Scholar]
  20. Stevens JG, Wagner EK, Devi-Rao GB, et al. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 1987 ; 235 : 1056–1059. [CrossRef] [PubMed] [Google Scholar]
  21. Wagner EK, Bloom DC. Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 1997 ; 10 : 419–433. [PubMed] [Google Scholar]
  22. Zabolotny JM, Krummenacher C, Frazer NW. The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol 1997 ; 71 : 4199–4208. [PubMed] [Google Scholar]
  23. Umbach JL, Kramer MF, Jurak I, et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008 ; 454 : 780–783. [PubMed] [Google Scholar]
  24. Tang S, Bertke AS, Patel A, et al. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA 2008 ; 105 : 10931–10936. [CrossRef] [Google Scholar]
  25. Pan D, Flores O, Umbach JL, et al. A neuron-specific host microRNA targets Herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2014 ; 15 : 446–456. [CrossRef] [PubMed] [Google Scholar]
  26. Perng GC, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000 ; 287 : 1500–1503. [CrossRef] [PubMed] [Google Scholar]
  27. Thompson RL, Sawtell NM. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 2001 ; 75 : 6660–6675. [CrossRef] [PubMed] [Google Scholar]
  28. Thompson RL, Sawtell NM. Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 2000 ; 74 : 965–974. [CrossRef] [PubMed] [Google Scholar]
  29. Khanna KM, Lepisto AJ, Decman V, Hendricks RL. Immune control of herpes simplex virus during latency. Curr Opin Immunol 2004 ; 16 : 463–469. [CrossRef] [PubMed] [Google Scholar]
  30. Margolis TP, Imai Y, Yang L, et al. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 2007 ; 81 : 1872–1878. [CrossRef] [PubMed] [Google Scholar]
  31. Sawtell NM. Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 1997 ; 71 : 5423–5431. [PubMed] [Google Scholar]
  32. Catez F, Picard C, Held K, et al. HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 2012 ; 8 : e1002852. [CrossRef] [PubMed] [Google Scholar]
  33. Sawtell NM, Poon DK, Tansky CS, Thompson RL. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 1998 ; 72 : 5343–550. [PubMed] [Google Scholar]
  34. Deshmane SL, Frazer NM. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatine structure. J Virol 1989 ; 63 : 943–947. [PubMed] [Google Scholar]
  35. Kubat NJ, Amelio AL, Giordani NV, Bloom DC. The herpes silplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 2004 ; 78 : 12508–12518. [CrossRef] [PubMed] [Google Scholar]
  36. Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 2009 ; 83 : 8182–8190. [CrossRef] [PubMed] [Google Scholar]
  37. Amelio AL, Giordani NV, Kubat NJ, et al. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 2006 ; 80 : 2063–2068. [CrossRef] [PubMed] [Google Scholar]
  38. Wilcox CL, Johnson EM. Characterisation of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 1988 ; 62 : 393–399. [PubMed] [Google Scholar]
  39. Camarena V, Kobayashi M, Kim JY, et al. Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 2012 ; 8 : 320–330. [CrossRef] [PubMed] [Google Scholar]
  40. Kobayashi M, Wilson AC, Chao MV, et al. Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev 2012 ; 26 : 1527–1532. [CrossRef] [PubMed] [Google Scholar]
  41. Hunsperger EA, Wilcox CL. Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture. J Gen Virol 2003 ; 84 : 1071–1078. [CrossRef] [PubMed] [Google Scholar]
  42. Du Te, Zhou G, Roizman B. HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcripts and miRNA. Proc Natl Acad Sci USA 2011 ; 108 : 18820–18824. [CrossRef] [Google Scholar]
  43. Kim JY, Mandarino A, Chao MV, et al. Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neurons. PLoS Pathog 2012 ; 8 : e1002540. [CrossRef] [PubMed] [Google Scholar]
  44. Whitlow Z, Kristie TM. Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1. J Virol 2009 ; 83 : 9591–9595. [CrossRef] [PubMed] [Google Scholar]
  45. St Leger AJ, Hendricks RL. CD8 T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J Neurovirol 2011 ; 17 : 528–534. [CrossRef] [PubMed] [Google Scholar]
  46. Knickelbein JE, Khanna KM, Yee MB, et al. Noncytotoxic lytic granule-mediated CD8+T cell inhibition of HSV-1 reactivation from neuronal latency. Science 2008 ; 322 : 268–271. [CrossRef] [PubMed] [Google Scholar]
  47. Maraoui MA, El Asmi F, Dutrieux, et al. Implication des corps nucléaires PML dans l’immunité intrinsèque et innée. Med Sci (Paris) 2014 ; 30 : 765–771. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  48. Bertin A, Mangenot S. Structure et dynamique de la particule cœur de nucléosome. Med Sci (Paris) 2008 ; 24 : 715–719. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.