Accès gratuit
Numéro |
Med Sci (Paris)
Volume 31, Numéro 5, Mai 2015
|
|
---|---|---|
Page(s) | 506 - 514 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20153105012 | |
Publié en ligne | 9 juin 2015 |
- Roizman B, Knipe DM, Whitley RJ. Herpes simplex viruses. In : Knipe DM, Howley PM, eds. Fields virology, 5th ed. Philadelphia : Lippincott Williams and Wilkins, 2007 : 2501–2602. [Google Scholar]
- Roizman B, Zhou G, Du T. Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues. J Neurovirol 2011 ; 17 : 512–517. [CrossRef] [PubMed] [Google Scholar]
- Honess RW, Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 1974 ; 14 : 8–19. [PubMed] [Google Scholar]
- Kent JR, Zeng PY, Atanasiu D, et al. During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription. J Virol 2004 ; 78 : 10178–10186. [CrossRef] [PubMed] [Google Scholar]
- Herrera FJ, Triezemberg SJ. VP16-dependent association of chromatin–modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 2004 ; 78 : 9689–9696. [CrossRef] [PubMed] [Google Scholar]
- Kalamvoki M, Roizman B. The histone acetyl transferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27 and ICP22. J Virol 2011 ; 85 : 9472–9477. [CrossRef] [PubMed] [Google Scholar]
- Liang Y, Vogel JL, Narayanan A, et al. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 2009 ; 15 : 1312–1317. [CrossRef] [PubMed] [Google Scholar]
- Boutell C, Sadis S, Everett RD. Herpes simplex virus type 1 immediate-early protein ICP0 and its isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 2002 ; 76 : 841–850. [CrossRef] [PubMed] [Google Scholar]
- Boutell C, Everett RD. Regulation of alphaherpesvirus infection by the ICP0 family of proteins. J Gen Virol 2013 ; 94 : 465–481. [CrossRef] [PubMed] [Google Scholar]
- Everett RD, Boutell C, Orr A. Phenotype of a herpes simplex virus type 1 mutant that fails to express immediate-early regulatory protein ICP0. J Virol 2004 ; 78 : 1763–1774. [CrossRef] [PubMed] [Google Scholar]
- Everett RD. The role of ICP0 in counteracting intrinsic cellular resistance to virus infection. In : Weller KS, ed. Alphaherpesviruses: molecular virology. Norfolk UK : Caister Academic Press, 2011 : 39–50. [Google Scholar]
- Lomonte P, Thomas J, Texier P, et al. Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 2004 ; 78 : 6744–6757. [CrossRef] [PubMed] [Google Scholar]
- Gross S, Catez F, Masumoto H, Lomonte P. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1. PLoS One 2012 ; 7 : e44227. [CrossRef] [PubMed] [Google Scholar]
- Lilley CE, Chaurushiya M, Boutell C, et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010 ; 29 : 943–955. [CrossRef] [PubMed] [Google Scholar]
- Zhou G, Du T, Roizman B. The role of the CoREST/REST repressonr complex in herpes simplex virus A productive infection and in latency. Viruses 2013 ; 5 : 1208–1218. [CrossRef] [PubMed] [Google Scholar]
- Roizman B, Sears AE. An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 1987 ; 41 : 543–571. [CrossRef] [PubMed] [Google Scholar]
- Hafezi W, Lorentzen EU, Eing BR, et al. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 2012 ; 8 : e1002679. [CrossRef] [PubMed] [Google Scholar]
- Kolb G, Kristie TM. Association of the cellular coactivator HCF1 with the Golgi apparatus in sensory neurons. J Virol 2008 ; 82 : 9555–9563. [CrossRef] [PubMed] [Google Scholar]
- Lakin ND, Palmer R, Lillycrop KA, et al. Down-regulation of the octamer binding protein Oct1 during growth arrest and differentiation of a neuronal cell line. Brain Res Mol Brain Res 1995 ; 28 : 47–54. [CrossRef] [PubMed] [Google Scholar]
- Stevens JG, Wagner EK, Devi-Rao GB, et al. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 1987 ; 235 : 1056–1059. [CrossRef] [PubMed] [Google Scholar]
- Wagner EK, Bloom DC. Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 1997 ; 10 : 419–433. [PubMed] [Google Scholar]
- Zabolotny JM, Krummenacher C, Frazer NW. The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol 1997 ; 71 : 4199–4208. [PubMed] [Google Scholar]
- Umbach JL, Kramer MF, Jurak I, et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008 ; 454 : 780–783. [PubMed] [Google Scholar]
- Tang S, Bertke AS, Patel A, et al. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci USA 2008 ; 105 : 10931–10936. [CrossRef] [Google Scholar]
- Pan D, Flores O, Umbach JL, et al. A neuron-specific host microRNA targets Herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2014 ; 15 : 446–456. [CrossRef] [PubMed] [Google Scholar]
- Perng GC, Jones C, Ciacci-Zanella J, et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000 ; 287 : 1500–1503. [CrossRef] [PubMed] [Google Scholar]
- Thompson RL, Sawtell NM. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 2001 ; 75 : 6660–6675. [CrossRef] [PubMed] [Google Scholar]
- Thompson RL, Sawtell NM. Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 2000 ; 74 : 965–974. [CrossRef] [PubMed] [Google Scholar]
- Khanna KM, Lepisto AJ, Decman V, Hendricks RL. Immune control of herpes simplex virus during latency. Curr Opin Immunol 2004 ; 16 : 463–469. [CrossRef] [PubMed] [Google Scholar]
- Margolis TP, Imai Y, Yang L, et al. Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 2007 ; 81 : 1872–1878. [CrossRef] [PubMed] [Google Scholar]
- Sawtell NM. Comprehensive quantification of herpes simplex virus latency at the single-cell level. J Virol 1997 ; 71 : 5423–5431. [PubMed] [Google Scholar]
- Catez F, Picard C, Held K, et al. HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 2012 ; 8 : e1002852. [CrossRef] [PubMed] [Google Scholar]
- Sawtell NM, Poon DK, Tansky CS, Thompson RL. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J Virol 1998 ; 72 : 5343–550. [PubMed] [Google Scholar]
- Deshmane SL, Frazer NM. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatine structure. J Virol 1989 ; 63 : 943–947. [CrossRef] [PubMed] [Google Scholar]
- Kubat NJ, Amelio AL, Giordani NV, Bloom DC. The herpes silplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyperacetylated during latency independently of LAT transcription. J Virol 2004 ; 78 : 12508–12518. [CrossRef] [PubMed] [Google Scholar]
- Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 2009 ; 83 : 8182–8190. [CrossRef] [PubMed] [Google Scholar]
- Amelio AL, Giordani NV, Kubat NJ, et al. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 2006 ; 80 : 2063–2068. [CrossRef] [PubMed] [Google Scholar]
- Wilcox CL, Johnson EM. Characterisation of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 1988 ; 62 : 393–399. [PubMed] [Google Scholar]
- Camarena V, Kobayashi M, Kim JY, et al. Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 2012 ; 8 : 320–330. [Google Scholar]
- Kobayashi M, Wilson AC, Chao MV, et al. Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation repressor. Genes Dev 2012 ; 26 : 1527–1532. [CrossRef] [PubMed] [Google Scholar]
- Hunsperger EA, Wilcox CL. Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture. J Gen Virol 2003 ; 84 : 1071–1078. [CrossRef] [PubMed] [Google Scholar]
- Du Te, Zhou G, Roizman B. HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcripts and miRNA. Proc Natl Acad Sci USA 2011 ; 108 : 18820–18824. [CrossRef] [Google Scholar]
- Kim JY, Mandarino A, Chao MV, et al. Transient reversal of episome silencing precedes VP16-dependent transcription during reactivation of latent HSV-1 in neurons. PLoS Pathog 2012 ; 8 : e1002540. [CrossRef] [PubMed] [Google Scholar]
- Whitlow Z, Kristie TM. Recruitment of the transcriptional coactivator HCF-1 to viral immediate-early promoters during initiation of reactivation from latency of herpes simplex virus type 1. J Virol 2009 ; 83 : 9591–9595. [CrossRef] [PubMed] [Google Scholar]
- St Leger AJ, Hendricks RL. CD8 T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J Neurovirol 2011 ; 17 : 528–534. [CrossRef] [PubMed] [Google Scholar]
- Knickelbein JE, Khanna KM, Yee MB, et al. Noncytotoxic lytic granule-mediated CD8+T cell inhibition of HSV-1 reactivation from neuronal latency. Science 2008 ; 322 : 268–271. [CrossRef] [PubMed] [Google Scholar]
- Maraoui MA, El Asmi F, Dutrieux, et al. Implication des corps nucléaires PML dans l’immunité intrinsèque et innée. Med Sci (Paris) 2014 ; 30 : 765–771. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Bertin A, Mangenot S. Structure et dynamique de la particule cœur de nucléosome. Med Sci (Paris) 2008 ; 24 : 715–719. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.