Free Access
Med Sci (Paris)
Volume 31, Number 4, Avril 2015
Page(s) 404 - 416
Section M/S Revues
Published online 08 May 2015
  1. Dugue GP, Akemann W, Knopfel T. A comprehensive concept of optogenetics. Prog Brain Res 2012 ; 196 : 1–28. [CrossRef] [PubMed] [Google Scholar]
  2. Dugue GP, Tricoire L. Principes et applications de l’optogénétique en neuroscience. Med Sci (Paris) 2015 ; 31 : 291–303. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011 ; 34 : 389–412. [CrossRef] [PubMed] [Google Scholar]
  4. Han MH, Friedman AK. Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 2012 ; 62 : 89–100. [CrossRef] [PubMed] [Google Scholar]
  5. Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 2013 ; 77 : 406–424. [CrossRef] [PubMed] [Google Scholar]
  6. Lipsman N, Giacobbe P, Lozano AM. Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience. Handb Clin Neurol 2013 ; 116 : 245–250. [CrossRef] [PubMed] [Google Scholar]
  7. Sankar T, Lipsman N, Lozano AM. Deep brain stimulation for disorders of memory and cognition. Neurotherapeutics 2014 ; 11 : 527–534. [CrossRef] [Google Scholar]
  8. Lipsman N, Woodside DB, Lozano AM. Neurocircuitry of limbic dysfunction in anorexia nervosa. Cortex 2014 ; 62 : 109–118. [CrossRef] [PubMed] [Google Scholar]
  9. Mallet L, Schüpbach M, N’Diaye K, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA 2007 ; 104 : 10661–10666. [CrossRef] [Google Scholar]
  10. Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. Learn Mem 2015 ; 22 : 232–238. [CrossRef] [PubMed] [Google Scholar]
  11. Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther 2011 ; 11 : 307–320. [CrossRef] [PubMed] [Google Scholar]
  12. Duale H, Kasparov S, Paton JF, Teschemacher AG. Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 2005 ; 90 : 71–78. [CrossRef] [PubMed] [Google Scholar]
  13. Christine CW, Starr PA, Larson PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009 ; 73 : 1662–1669. [CrossRef] [PubMed] [Google Scholar]
  14. Marks WJ, Jr, Bartus RT, Siffert J, Davis CS, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010 ; 9 : 1164–1172. [CrossRef] [PubMed] [Google Scholar]
  15. LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011 ; 10 : 309–319. [CrossRef] [PubMed] [Google Scholar]
  16. Mukherjee S, Thrasher AJ. Gene therapy for PIDs: progress, pitfalls and prospects. Gene 2013 ; 525 : 174–181. [CrossRef] [PubMed] [Google Scholar]
  17. Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000 ; 290 : 767–773. [CrossRef] [PubMed] [Google Scholar]
  18. Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014 ; 383 : 1138–1146. [CrossRef] [PubMed] [Google Scholar]
  19. Miyashita T, Shao YR, Chung J, et al. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 2013 ; 7 : 8. [PubMed] [Google Scholar]
  20. Senova YS, et al. Optical stimulation of the cortico-subthalamic pathway using lentiviral vector with retrograde transport properties for CHR-2-eYFP in non-human primates. New Orleans, LA : Society for Neuroscience, 2012. [Google Scholar]
  21. Gerits A, Farivar R, Rosen BR, et al. Optogenetically induced behavioral and functional network changes in primates. Curr Biol 2012 ; 22 : 1722–1726. [CrossRef] [PubMed] [Google Scholar]
  22. Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods 2014 ; 11 : 338–346. [CrossRef] [PubMed] [Google Scholar]
  23. Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013 ; 16 : 1499–1508. [Google Scholar]
  24. Chuong AS, Miri ML, Busskamp V, et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014 ; 17 : 1123–1129. [Google Scholar]
  25. Berndt A, Yizhar O, Gunaydin LA, et al. Bi-stable neural state switches. Nat Neurosci 2009 ; 12 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  26. Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011 ; 477 : 171–178. [CrossRef] [PubMed] [Google Scholar]
  27. Han X., Qian X, Bernstein JG, et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 2009 ; 62 : 191–198. [CrossRef] [PubMed] [Google Scholar]
  28. Han X, Chow BY, Zhou H, et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 2011 ; 5 : 18. [PubMed] [Google Scholar]
  29. Diester I, Kaufman MT, Mogri M, et al. An optogenetic toolbox designed for primates. Nat Neurosci 2011 ; 14 : 387–397. [CrossRef] [PubMed] [Google Scholar]
  30. Cavanaugh J, Monosov IE, McAlonan K, et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 2012 ; 76 : 901–907. [CrossRef] [PubMed] [Google Scholar]
  31. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998 ; 339 : 1044–1053. [CrossRef] [PubMed] [Google Scholar]
  32. Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 1998 ; 339 : 1130–1143. [CrossRef] [PubMed] [Google Scholar]
  33. Kravitz AV, Freeze BS, Parker PR, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010 ; 466 : 622–626. [CrossRef] [PubMed] [Google Scholar]
  34. Prashanth LK, Fox S, Meissner WG. L-Dopa-induced dyskinesia-clinical presentation, genetics, and treatment. Int Rev Neurobiol 2011 ; 98 : 31–54. [CrossRef] [PubMed] [Google Scholar]
  35. Benabid AL, Pollak P, Gross C, et al. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 1994 ; 62 : 76–84. [Google Scholar]
  36. Carron R, Chabardes S, Hammond C. Les mécanismes d’action de la simulation cérébrale à haute fréquence. Neurochirurgie 2012 ; 58 : 209–217. [CrossRef] [PubMed] [Google Scholar]
  37. Gradinaru V, Mogri M, Thompson KR, et al. Optical deconstruction of parkinsonian neural circuitry. Science 2009 ; 324 : 354–359. [CrossRef] [PubMed] [Google Scholar]
  38. Drouot X, Oshino S, Jarraya B, et al. Functional recovery in a primate model of Parkinson’s disease following motor cortex stimulation. Neuron 2004 ; 44 : 769–778. [CrossRef] [PubMed] [Google Scholar]
  39. Lefaucheur JP, Drouot X, Von Raison F, et al. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 2004 ; 115 : 2530–2541. [CrossRef] [PubMed] [Google Scholar]
  40. Mendes Martins V, Coste J, Derost P, et al. Complications chirurgicales de la stimulation cérébrale profonde : expérience clinique à propos de 184 cas. Neurochirurgie 2012; 58 : 219–224. [CrossRef] [PubMed] [Google Scholar]
  41. Picot MC, Baldy-Moulinier M, Daurès JP, et al. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia 2008 ; 49 : 1230–1238. [CrossRef] [PubMed] [Google Scholar]
  42. Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 2014 ; 11 : 508–526. [CrossRef] [Google Scholar]
  43. Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 2010 ; 51 : 899–908. [CrossRef] [PubMed] [Google Scholar]
  44. Tonnesen J, Sørensen AT, Deisseroth K, et al. Optogenetic control of epileptiform activity. Proc Natl Acad Sci USA 2009 ; 106 : 12162–12167. [CrossRef] [Google Scholar]
  45. Wykes RC, Heeroma JH, Mantoan L, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 2012; 4 : 161ra152. [CrossRef] [PubMed] [Google Scholar]
  46. Berglind F, Ledri M, Sørensen AT, et al. Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis 2014 ; 65 : 133–141. [CrossRef] [PubMed] [Google Scholar]
  47. Sukhotinsky I, Chan AM, Ahmed OJ, et al. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS One 2013 ; 8 : e62013. [CrossRef] [PubMed] [Google Scholar]
  48. Ledri M, Madsen MG, Nikitidou L, et al. Global optogenetic activation of inhibitory interneurons during epileptiform activity. J Neurosci 2014 ; 34 : 3364–3377. [CrossRef] [PubMed] [Google Scholar]
  49. Cohen I, Navarro V, Clemenceau S, et al. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2002 ; 298 : 1418–1421. [CrossRef] [PubMed] [Google Scholar]
  50. Wozny C, Kivi A, Lehmann TN, et al. Comment on: on the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 2003 ; 301 : 463. [CrossRef] [Google Scholar]
  51. Paz JZ, Davidson TJ, Frechette ES, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 2013 ; 16 : 64–70. [CrossRef] [PubMed] [Google Scholar]
  52. Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 2013 ; 4 : 1376. [CrossRef] [PubMed] [Google Scholar]
  53. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 2005 ; 11 : 177–185. [CrossRef] [PubMed] [Google Scholar]
  54. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006 ; 368 : 1795–1809. [CrossRef] [PubMed] [Google Scholar]
  55. Fahim AT, Daiger SP, Weleber RG Retinitis pigmentosa overview. Seattle (WA) : GeneReviews, 2000. [Google Scholar]
  56. Maghami MH, Sodagar AM, Lashay A, et al. Visual prostheses: the enabling technology to give sight to the blind. J Ophthalmic Vis Res 2014 ; 9 : 494–505. [CrossRef] [PubMed] [Google Scholar]
  57. Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology 2012 ; 119 : 779–788. [CrossRef] [PubMed] [Google Scholar]
  58. Uy HS, Chan PS, Cruz FM. Stem cell therapy: a novel approach for vision restoration in retinitis pigmentosa. Med Hypothesis Discov Innov Ophthalmol 2013 ; 2 : 52–55. [PubMed] [Google Scholar]
  59. Tao W. Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin Biol Ther 2006 ; 6 : 717–726. [CrossRef] [PubMed] [Google Scholar]
  60. Petrs-Silva H, Linden R. Advances in gene therapy technologies to treat retinitis pigmentosa. Clin Ophthalmol 2014 ; 8 : 127–136. [PubMed] [Google Scholar]
  61. Sahel JA, Roska B. Gene therapy for blindness. Annu Rev Neurosci 2013 ; 36 : 467–488. [CrossRef] [PubMed] [Google Scholar]
  62. Boye SE, Boye SL, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther 2013 ; 21 : 509–519. [CrossRef] [PubMed] [Google Scholar]
  63. Dalkara D, Sahel JA. Gene therapy for inherited retinal degenerations. CR Biol 2014 ; 337 : 185–192. [CrossRef] [Google Scholar]
  64. Stieger K, Cronin T, Bennett J, Rolling F. Adeno-associated virus mediated gene therapy for retinal degenerative diseases. Methods Mol Biol 2011 ; 807 : 179–218. [CrossRef] [PubMed] [Google Scholar]
  65. Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006 ; 50 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  66. Tomita H, Sugano E, Fukazawa Y, et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009 ; 4 : e7679. [CrossRef] [PubMed] [Google Scholar]
  67. Thyagarajan S, van Wyk M, Lehmann K, et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 2010 ; 30 : 8745–8758. [CrossRef] [PubMed] [Google Scholar]
  68. Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 2008 ; 105 : 16009–16014. [CrossRef] [Google Scholar]
  69. Caporale N, Kolstad KD, Lee T, et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 2011 ; 19 : 1212–1219. [Google Scholar]
  70. Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008 ; 11 : 667–675. [CrossRef] [PubMed] [Google Scholar]
  71. Cronin T., Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014 ; 6 : 1175–1190. [CrossRef] [PubMed] [Google Scholar]
  72. Mace E, Vandenberghe LH, Hantz P, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 2014 ; 23 : 7–16. [Google Scholar]
  73. Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011 ; 19 : 1220–1229. [CrossRef] [PubMed] [Google Scholar]
  74. Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010 ; 329 : 413–417. [CrossRef] [PubMed] [Google Scholar]
  75. Reutsky-Gefen I, Golan L, Farah N, et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat Commun 2013 ; 4 : 1509. [CrossRef] [PubMed] [Google Scholar]
  76. Nirenberg S, Pandarinath C. Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci USA 2012 ; 109 : 15012–15017. [CrossRef] [Google Scholar]
  77. Barrett JM, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Vis Neurosci 2014 ; 31 : 345–354. [CrossRef] [PubMed] [Google Scholar]
  78. Jacobson SG, Sumaroka A, Luo X, Cideciyan AV. Retinal optogenetic therapies: clinical criteria for candidacy. Clin Genet 2013 ; 84 : 175–182. [CrossRef] [PubMed] [Google Scholar]
  79. RetroSense Therapeutics. Available from: [Google Scholar]
  80. McDevitt RA, Reed SJ, Britt JP. Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications. Neuropsychiatr Dis Treat 2014 ; 10 : 1369–1379. [PubMed] [Google Scholar]
  81. Eos Neuroscience. Available from: [Google Scholar]
  82. GenSight Biologics. Available from: [Google Scholar]
  83. Circuit Therapeutics. Available from: [Google Scholar]
  84. Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 2010 ; 11 : 760–772. [CrossRef] [PubMed] [Google Scholar]
  85. Dalkara D. La conception de vecteurs adaptés à la thérapie génique oculaire. Med Sci (Paris) 2015; 31 (sous presse). [Google Scholar]
  86. Flores Alves Dos Santos J, Mallet L. Le trouble obsessionnel compulsif. Med Sci (Paris) 2013 ; 29 : 1111–1116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.